cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325469 a(n) is the number of divisors d of n such that d divides sigma(d).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 16 2019

Keywords

Comments

Sequence of the smallest numbers m with n divisors d such that d divides sigma(d) for n >= 1: 1, 6, 84, 672, 3360, 30240, 393120, ...

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 2.
		

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]];
    
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], #] &];  Array[a, 100] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n)={sumdiv(n, d, sigma(d) % d == 0)} \\ Andrew Howroyd, Aug 16 2019

Formula

a(A097603(n)) > 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A335830. - Amiram Eldar, Apr 16 2025

Extensions

More terms from Antti Karttunen, Aug 22 2019

A325470 a(n) is the sum of divisors d of n such that d divides sigma(d).

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 29, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 29, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 35, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Aug 16 2019

Keywords

Examples

			For n = 12, divisors d of 12: 1, 2, 3, 4, 6, 12; corresponding sigma(d): 1, 3, 4, 7, 12, 28; d divides sigma(d) for 2 divisors d: 1 and 6; a(12) = 1 + 6 = 7.
		

Crossrefs

Programs

  • Magma
    [&+[d: d in Divisors(n) | IsIntegral(SumOfDivisors(d) / d)] : n in [1..100]]
    
  • Mathematica
    a[n_] := DivisorSum[n, # &, Divisible[DivisorSigma[1, #], #] &];  Array[a, 100] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n)={sumdiv(n, d, if(sigma(d) % d == 0, d))} \\ Andrew Howroyd, Aug 16 2019

Formula

a(A097603(n)) > 1.

A338405 a(n) is the smallest number with exactly n divisors d such that sigma(d)/d is an integer.

Original entry on oeis.org

1, 6, 84, 672, 3360, 30240, 393120, 12186720, 164989440, 14024102400, 2144862720, 182313331200, 5705334835200, 96990692198400, 187409525022720, 9602078527641600, 124627334140108800, 2118664680381849600, 19067982123436646400, 209747803357803110400, 3985208263798259097600, 63343836614056539340800, 401177631889024749158400, 1203532895667074247475200
Offset: 1

Views

Author

Jaroslav Krizek, Oct 24 2020

Keywords

Comments

a(n) is the smallest number with n multiply-perfect divisors.
Number 1 is only number m such that sigma(d) / d is an integer for all divisors d.

Examples

			a(3) = 84 because 84 with divisors 1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42 and 84 is the smallest number with 3 multiply-perfect divisors (1, 6 and 28): sigma(1)/1 = 1, sigma(6)/6  = 2, sigma(28)/28  = 2.
		

Crossrefs

Cf. A000203 (sigma), A007691 (multiply-perfect numbers).

Programs

  • Magma
    [Min([m: m in[1..10^5] | #[d: d in Divisors(m) | IsIntegral(&+Divisors(d) / d)] eq n]): n in [1..6]]
    
  • Mathematica
    f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[1, #], #] &]; m = 7; s = Table[0, {m}]; c = 0; n = 1; While[c < m, i = f[n]; If[i <= m && s[[i]] == 0, c++; s[[i]] = n]; n++]; s (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    a(n) = {my(m=1); while (sumdiv(m, d, !(sigma(d)%d)) != n, m++); m;} \\ Michel Marcus, Oct 25 2020

Extensions

a(8) from Michel Marcus, Oct 25 2020
a(9)-a(13) from Jinyuan Wang, Oct 31 2020
Name clarified by Chai Wah Wu, Nov 01 2020
a(14)-a(20) from David A. Corneth, Nov 02 2020
Terms a(21) onward from Max Alekseyev, Feb 21 2024
Showing 1-3 of 3 results.