cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A015723 Number of parts in all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 3, 3, 5, 8, 10, 13, 18, 25, 30, 40, 49, 63, 80, 98, 119, 149, 179, 218, 266, 318, 380, 455, 541, 640, 760, 895, 1050, 1234, 1442, 1679, 1960, 2272, 2635, 3052, 3520, 4054, 4669, 5359, 6142, 7035, 8037, 9170, 10460, 11896, 13517, 15349, 17394, 19691
Offset: 1

Views

Author

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with a total of 1 + 2 + 2 + 3 = 8 parts, so a(6) = 8. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 27 2013
  • Mathematica
    nn=50; Rest[CoefficientList[Series[D[Product[1+y x^i,{i,1,nn}],y]/.y->1,{x,0,nn}],x]]  (* Geoffrey Critzer, Oct 29 2012; fixed by Vaclav Kotesovec, Apr 16 2016 *)
    q[n_, k_] := q[n, k] = If[nVaclav Kotesovec, Apr 16 2016 *)
    Table[Length[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,1,50}] (* Gus Wiseman, May 09 2019 *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0},
       Sum[{#[[1]], #[[2]] + #[[1]]*j}&@ b[n-i*j, i-1], {j, 0, Min[n/i, 1]}]]];
    a[n_] := b[n, n][[2]];
    Array[a, 50] (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
  • PARI
    N=66;  q='q+O('q^N); gf=sum(n=0,N, n*q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    Vec(gf) /* Joerg Arndt, Oct 20 2012 */

Formula

G.f.: sum(k>=1, x^k/(1+x^k) ) * prod(m>=1, 1+x^m ). Convolution of A048272 and A000009. - Vladeta Jovovic, Nov 26 2002
G.f.: sum(k>=1, k*x^(k*(k+1)/2)/prod(i=1..k, 1-x^i ) ). - Vladeta Jovovic, Sep 21 2005
a(n) = A238131(n)+A238132(n) = sum_{k=1..n} A048272(k)*A000009(n-k). - Mircea Merca, Feb 26 2014
a(n) = Sum_{k>=1} k*A008289(n,k). - Vaclav Kotesovec, Apr 16 2016
a(n) ~ 3^(1/4) * log(2) * exp(Pi*sqrt(n/3)) / (2 * Pi * n^(1/4)). - Vaclav Kotesovec, May 19 2018
For n > 0, a(n) = A116676(n) + A116680(n). - Vaclav Kotesovec, May 26 2018

Extensions

Extended and corrected by Naohiro Nomoto, Feb 24 2002

A066189 Sum of all partitions of n into distinct parts.

Original entry on oeis.org

0, 1, 2, 6, 8, 15, 24, 35, 48, 72, 100, 132, 180, 234, 308, 405, 512, 646, 828, 1026, 1280, 1596, 1958, 2392, 2928, 3550, 4290, 5184, 6216, 7424, 8880, 10540, 12480, 14784, 17408, 20475, 24048, 28120, 32832, 38298, 44520, 51660, 59892, 69230, 79904
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with sum 6+5+1+4+2+3+2+1 = 24. - _Gus Wiseman_, May 09 2019
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>n, [0$2],
          b(n, i+1)+(p-> p+[0, i*p[1]])(b(n-i, i+1))))
        end:
    a:= n-> b(n, 1)[2]:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 01 2014
  • Mathematica
    PartitionsQ[ Range[ 60 ] ]Range[ 60 ]
    nmax=60; CoefficientList[Series[x*D[Product[1+x^k, {k, 1, nmax}], x], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 21 2016 *)

Formula

G.f.: sum(n>=1, n*q^(n-1)/(1+q^n) ) * prod(n>=1, 1+q^n ). - Joerg Arndt, Aug 03 2011
a(n) = n * A000009(n). - Vaclav Kotesovec, Sep 25 2016
G.f.: x*f'(x), where f(x) = Product_{k>=1} (1 + x^k). - Vaclav Kotesovec, Nov 21 2016
a(n) = A056239(A325506(n)). - Gus Wiseman, May 09 2019

A325504 Product of products of parts over all strict integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Examples

			The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120.
The sequence of terms together with their prime indices begins:
              1: {}
              1: {}
              2: {1}
              6: {1,2}
             12: {1,1,2}
            120: {1,1,1,2,3}
           1440: {1,1,1,1,1,2,2,3}
          40320: {1,1,1,1,1,1,1,2,2,3,4}
        1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4}
     1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4}
  2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
		

Crossrefs

Cf. A000009, A006128, A007870 (non-strict version), A015723, A022629 (sum of products of parts), A066186, A066189, A066633, A246867, A325505, A325506, A325512, A325513, A325515.

Programs

  • Maple
    a:= n-> mul(i, i=map(x-> x[], select(x->
            nops(x)=nops({x[]}), combinat[partition](n)))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)->
         [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[Times@@Join@@Select[IntegerPartitions[n],UnsameQ@@#&],{n,0,10}]

Formula

A001222(a(n)) = A325515(n).
a(n) = A003963(A325506(n)).

A325537 Irregular triangle whose rows are the sorted combined parts of all strict integer partitions of n.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 4, 1, 2, 3, 4, 5, 1, 1, 2, 2, 3, 4, 5, 6, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10
Offset: 1

Views

Author

Gus Wiseman, May 08 2019

Keywords

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)} with multiset union {1,1,2,2,3,4,5,6}, which is row n = 6.
Triangle begins:
  1
  2
  1 2 3
  1 3 4
  1 2 3 4 5
  1 1 2 2 3 4 5 6
  1 1 2 2 3 4 4 5 6 7
  1 1 1 2 2 3 3 4 5 5 6 7 8
  1 1 1 2 2 2 3 3 3 4 4 5 5 6 6 7 8 9
		

Crossrefs

Row lengths are A015723.
Row sums are A066189.
Row products are A325504.
Run-lengths of row n are row n of A325513.

Programs

  • Mathematica
    Table[Sort[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]],{n,10}]
Showing 1-4 of 4 results.