cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323723 a(n) = (-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4.

Original entry on oeis.org

0, 0, 4, 14, 32, 64, 108, 174, 256, 368, 500, 670, 864, 1104, 1372, 1694, 2048, 2464, 2916, 3438, 4000, 4640, 5324, 6094, 6912, 7824, 8788, 9854, 10976, 12208, 13500, 14910, 16384, 17984, 19652, 21454, 23328, 25344, 27436, 29678, 32000, 34480, 37044, 39774
Offset: 0

Views

Author

Stefano Spezia, Jan 25 2019

Keywords

Comments

For n > 1, a(n) is the subdiagonal sum of the matrix M(n) whose permanent is A322277(n).
All the terms of this sequence are even numbers (A005843).

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n -> (-2-(-1)^n*(-2+n)+n+2*n^3)/4));
    
  • Magma
    [(-2-(-1)^n*(-2+n)+n+2*n^3)/4: n in [0..50]];
    
  • Maple
    a:=n->(-2 - (-1)^n*(-2 + n) + n + 2*n^3)/4: seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(6 + n + n^3 + 12 Floor[1/2 (-3 + n)] + 4 Floor[1/2 (-3 + n)]^2 - 2 (1 + n) Floor[1/2 (-1 + n)])/2; Array[a,50,0]
  • Maxima
    makelist((-2-(-1)^n*(-2+n)+n+2*n^3)/4, n, 0, 50);
    
  • PARI
    a(n) = (-2-(-1)^n*(-2+n)+n+2*n^3)/4;
    
  • Python
    [(-2-(-1)**n*(-2+n)+n+2*n**3)/4 for n in range(50)]

Formula

O.g.f.: 2*x^2*(2 + 3*x + x^3)/((1 - x)^4*(1 + x)^2).
E.g.f.: (1/4)*exp(-x)*(2 + x)*(1 + exp(2*x)*(-1 + 2*x + 2* x^2)).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 5.
a(n) = (6 + n + n^3 + 12*floor((n - 3)/2) + 4*floor((n - 3)/2)^2 - 2*(1 + n)*floor((n - 1)/2))/2.
a(n) = (-2 - A033999(n)*(-2 + n) + n + A033431(n))/4.
a(n) = n^3/2 for even n; a(n) = (n - 1)*(n^2 + n + 2)/2 otherwise. - Bruno Berselli, Feb 06 2019
a(n) = 2*A004526(n*A000982(n)). [Found by Christian Krause's LODA miner] - Stefano Spezia, Dec 12 2021

A322844 a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2)).

Original entry on oeis.org

0, 0, 5, 6, 68, 50, 333, 196, 1040, 540, 2525, 1210, 5220, 2366, 9653, 4200, 16448, 6936, 26325, 10830, 40100, 16170, 58685, 23276, 83088, 32500, 114413, 44226, 153860, 58870, 202725, 76880, 262400, 98736, 334373, 124950, 420228, 156066, 521645, 192660, 640400, 235340
Offset: 0

Views

Author

Stefano Spezia, Dec 28 2018

Keywords

Comments

Conjectures: (Start)
For n > 1, a(n) is the absolute value of the trace of the 2nd exterior power of an n X n square matrix M(n) defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). Equivalently, a(n) is the absolute value of the coefficient of the term [x^(n-2)] in the characteristic polynomial of the matrix M(n), or the absolute value of the sum of all principal minors of M(n) of size 2.
For k > 2, the trace of the k-th exterior power of the matrix M(n) is equal to zero.
(End)

Crossrefs

Cf. A317614 (trace of matrix M(n)).
Cf. A002415, A037270, A074147 (antidiagonals of M matrices), A241016 (row sums of M matrices), A317617 (column sums of M matrices), A322277 (permanent of matrix M(n)), A323723 (subdiagonal sum of M matrices), A323724 (superdiagonal sum of M matrices), A325516 (k-superdiagonal sum of M matrices), A325655 (k-subdiagonal sum of M matrices).

Programs

  • GAP
    Flat(List([0..50], n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n mod 2))));
    
  • Magma
    [IsEven(n) select (1/4)*n^2*(1 + n^2) else (1/12)*(- 1 + n)*n^2*(1 + n): n in [0..50]];
    
  • Maple
    a:=n->(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*modp(n,2)): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*Mod[n,2]); Array[a,50,0]
    LinearRecurrence[{0,5,0,-10,0,10,0,-5,0,1},{0,0,5,6,68,50,333,196,1040,540},50] (* Harvey P. Dale, Aug 23 2025 *)
  • Maxima
    a(n):=(1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*mod(n,2))$ makelist(a(n), n, 0, 50);
    
  • PARI
    a(n) = (1/12)*n^2*(3*(1 + n^2) - 2*(2 + n^2)*(n % 2));
    
  • PARI
    a(n) = abs(polcoeff(charpoly(matrix(n, n, i, j, if (i %2, j + n*(i-1), n*i - j + 1))), n-2)); \\ Michel Marcus, Feb 06 2019
    
  • Python
    [int(n**2*(3*(1 + n**2) - 2*(2 + n**2)*pow(n, 1, 2))/12) for n in range(0,50)]

Formula

O.g.f.: -x^2*(5 + 6*x + 43*x^2 + 20*x^3 + 43*x^4 + 6*x^5 + 5*x^6)/((-1 + x)^5*(1 + x)^5).
E.g.f.: (1/(12*x^2))*exp(-x)*(24 - 60*exp(x) + 21*x + 9*x^2 + 2*x^3 + x^4 + exp(2*x)*(36 - 33*x + 15*x^2 - 4*x^3 + 2*x^4)).
a(n) = (1/4)*n^2*(1 + n^2) for n even.
a(n) = (1/2)*A037270(n) for n even.
a(n) = (1/12)*(-1 + n)*n^2*(1 + n) for n odd.
a(n) = A002415(n) for n odd.
a(2*n+1) = 5*a(2*n-1) - 10*a(2*n-3) + 10*a(2*n-5) - 5*a(2*n-7) + a(2*n-9), for n > 4.
a(2*n) = 5*a(2*n-2) - 10*a(2*n-4) + 10*a(2*n-6) - 5*a(2*n-8) + a(2*n-10), for n > 4.
O.g.f. for a(2*n+1): -x*(2*(3 + 10*x + 3*x^2))/(-1 + x)^5.
O.g.f. for a(2*n): x*(-5 - 43*x - 43*x^2 - 5*x^3)/(-1 + x)^5.
E.g.f. for a(2*n+1): (1/12)*(6*x*cosh(sqrt(x)) + sqrt(x)*(6 + x)*sinh(sqrt(x))).
E.g.f. for a(2*n): (1/4)*(x*(8 + x)*cosh(sqrt(x)) + 2*sqrt(x)*(1 + 3*x)*sinh(sqrt(x))).
Sum_{k>=1} 1/a(2*k) = (1/6)*(12 + Pi^2 - 6*Pi*coth(Pi/2)) = 0.21955691692893092525407699347398665248691900...
Sum_{k>=1} 1/a(2*k+1) = 3*(5 - Pi^2/2) = 0.1955933983659620717482635001857732970...
Sum_{k>=2} 1/a(k) = 17 - (4*Pi^2)/3 - Pi*coth(Pi/2) = 0.415150315294892997002340493659759949516369894...

A325656 a(n) = (1/24)*n*((4*n + 3)*(2*n^2 + 1) - 3*(-1)^n).

Original entry on oeis.org

0, 1, 8, 36, 104, 245, 492, 896, 1504, 2385, 3600, 5236, 7368, 10101, 13524, 17760, 22912, 29121, 36504, 45220, 55400, 67221, 80828, 96416, 114144, 134225, 156832, 182196, 210504, 242005, 276900, 315456, 357888, 404481, 455464, 511140, 571752, 637621, 709004, 786240
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th row sum of the triangle A325655.

Crossrefs

Programs

  • GAP
    Flat(List([0..50], n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3)));
    
  • Magma
    [(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): n in [0..50]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..50);
  • Mathematica
    a[n_]:=(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3); Array[a,50,0]
  • PARI
    a(n) = (1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3);

Formula

O.g.f.: -x*(1 + 5*x + 13*x*2 + 9*x^3 + 4*x^4)/((-1 + x)^5*(1 + x)^2).
E.g.f.: (1/24)*exp(-x)*x*(3 + 21*exp(2*x) + 78*exp(2*x)*x + 54*exp(2*x)*x^2 + 8*exp(2*x)*x*3).
a(n) = a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (1/12)*n^2*(4*n^2 + 3*n + 2) if n is even.
a(n) = (1/12)*n*(n + 1)*(4*n^2 - n + 3) if n is odd.
a(n) = n*A173722(2*n). - Stefano Spezia, Dec 21 2021

A325657 a(n) = (1/2)*(-1 + (-1)^n)*(n-1) + n^2.

Original entry on oeis.org

0, 1, 4, 7, 16, 21, 36, 43, 64, 73, 100, 111, 144, 157, 196, 211, 256, 273, 324, 343, 400, 421, 484, 507, 576, 601, 676, 703, 784, 813, 900, 931, 1024, 1057, 1156, 1191, 1296, 1333, 1444, 1483, 1600, 1641, 1764, 1807, 1936, 1981, 2116, 2163, 2304, 2353, 2500, 2551
Offset: 0

Views

Author

Stefano Spezia, May 13 2019

Keywords

Comments

For n > 0, a(n) is the n-th element of the diagonal of the triangle A325655. Equivalently, a(n) is the element M_{n,1} of the matrix M(n) whose permanent is A322277(n).

Crossrefs

Programs

  • GAP
    Flat(List([0..55], n->(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2));
    
  • Magma
    [(1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2: n in [0..55]];
    
  • Maple
    a:=n->(1/24)*n*(3 - 3*(- 1)^n + 4*n + 6*n^2 + 8*n^3): seq(a(n), n=0..55);
  • Mathematica
    Table[(1/2)*(- 1+(-1)^n)*(n-1)+n^2,{n,0,55}]
  • PARI
    a(n) = (1/2)*(- 1 + (- 1)^n)*(n - 1) + n^2;

Formula

O.g.f.: (-1 - 3*x - x^2 - 3*x^3)/((-1 + x)^3*(1+x)^2).
E.g.f.: (1/2)*exp(-x)*(-1 - x + exp(2*x)*(1 + x + 2*x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4
a(n) = n^2 if n is even.
a(n) = n^2 - n + 1 if n is odd.
Showing 1-4 of 4 results.