A326498 Number of maximal subsets of {1..n} containing no sums of distinct elements.
1, 1, 1, 3, 3, 6, 11, 16, 20, 32, 53, 78, 107, 149, 206, 292, 391, 556, 782, 1062, 1451, 1929, 2564, 3404, 4431, 5853, 7672, 9999, 12973, 16922, 22194, 28655, 36734, 47036, 60375, 76866, 97892, 123627, 157008, 196633, 248221, 311442, 390859, 488327, 610685
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 16 subsets: {1} {1,2} {1,2} {1,3} {1,2,4} {1,2,4} {1,2,4} {1,3} {1,2,4} {1,2,5} {1,2,5} {1,2,5} {2,3} {2,3,4} {1,3,5} {1,2,6} {1,2,6} {2,3,4} {1,3,5} {1,2,7} {2,4,5} {1,3,6} {1,3,6} {3,4,5} {1,4,6} {1,4,6} {2,3,4} {1,4,7} {2,3,6} {2,3,4} {2,4,5} {2,4,5} {2,5,6} {2,4,7} {3,4,5,6} {2,5,6} {1,3,5,7} {2,3,6,7} {3,4,5,6} {3,5,6,7} {4,5,6,7}
Links
- Andrew Howroyd, PARI Program
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Plus@@@Subsets[#,{2,n}]]=={}&]]],{n,0,10}]
-
PARI
\\ See link for program file. for(n=0, 25, print1(A326498(n), ", ")) \\ Andrew Howroyd, Aug 29 2019
Extensions
a(16)-a(40) from Andrew Howroyd, Aug 29 2019
a(41)-a(44) from Jinyuan Wang, Oct 11 2020