A121269 Number of maximal sum-free subsets of {1,2,...,n}.
1, 1, 2, 2, 4, 5, 6, 8, 13, 17, 23, 29, 37, 51, 66, 86, 118, 158, 201, 265, 359, 471, 598, 797, 1043, 1378, 1765, 2311, 3064, 3970, 5017, 6537, 8547, 11020, 14007, 18026, 23404, 30026, 37989, 48945, 62759, 80256, 101070, 129193, 164835, 209279, 262693, 334127
Offset: 0
Keywords
Examples
a(5)=5 because the maximal sum-free subsets of {1,2,3,4,5} are {1,4}, {2,3}, {2,5}, {1,3,5} and {3,4,5} From _Gus Wiseman_, Jul 10 2019: (Start) The a(1) = 1 through a(8) = 13 subsets: {1} {1} {1,3} {1,3} {1,4} {2,3} {1,4,6} {1,3,8} {2} {2,3} {1,4} {2,3} {1,3,5} {1,4,7} {1,4,6} {2,3} {2,5} {1,4,6} {2,3,7} {1,4,7} {3,4} {1,3,5} {2,5,6} {2,5,6} {1,5,8} {3,4,5} {3,4,5} {2,6,7} {1,6,8} {4,5,6} {3,4,5} {2,5,6} {1,3,5,7} {2,5,8} {4,5,6,7} {2,6,7} {3,4,5} {1,3,5,7} {2,3,7,8} {4,5,6,7} {5,6,7,8} (End)
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..80
- P. J. Cameron and P. Erdős, On the number of integers with various properties, in R. A. Mullin, ed., Number Theory: Proc. First Conf. of Canad. Number Theory Assoc. Conf., Banff, De Gruyter, Berlin, 1990, pp. 61-79.
- N. Hindman and H. Jordan, Measures of sum-free intersecting families, New York J. Math. 13 (2007), 97-106.
Crossrefs
Programs
-
Mathematica
fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Plus@@@Tuples[#,2]]=={}&]]],{n,0,10}] (* Gus Wiseman, Jul 10 2019 *)
Extensions
a(0) = 1 prepended by Gus Wiseman, Jul 10 2019
Terms a(42) and beyond from Fausto A. C. Cariboni, Oct 26 2020
Comments