cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A327111 BII-numbers of set-systems with spanning edge-connectivity 1.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 16, 17, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 34, 36, 37, 38, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 56, 57, 58, 59, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 88, 89, 90, 91, 96, 97, 98, 99
Offset: 1

Views

Author

Gus Wiseman, Aug 25 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 1 together with their BII-numbers begins:
   1: {{1}}
   2: {{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
   8: {{3}}
  16: {{1,3}}
  17: {{1},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  24: {{3},{1,3}}
  25: {{1},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
  31: {{1},{2},{1,2},{3},{1,3}}
  32: {{2,3}}
		

Crossrefs

Graphs with spanning edge-connectivity >= 2 are counted by A095983.
BII-numbers for vertex-connectivity 1 are A327098.
BII-numbers for non-spanning edge-connectivity 1 are A327099.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
Graphs with spanning edge-connectivity 1 are counted by A327145.
Graphs with spanning edge-connectivity 2 are counted by A327146.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]

A327144 Spanning edge-connectivity of the set-system with BII-number n.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			Positions of first appearances of each integer together with the corresponding set-systems:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

Dominated by A327103.
The same for cut-connectivity is A326786.
The same for non-spanning edge-connectivity is A326787.
The same for vertex-connectivity is A327051.
Positions of 1's are A327111.
Positions of 2's are A327108.
Positions of first appearance of each integer are A327147.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[spanEdgeConn[Union@@bpe/@bpe[n],bpe/@bpe[n]],{n,0,100}]

A327108 BII-numbers of set-systems with spanning edge-connectivity 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109, 110, 111, 112, 113, 114, 115, 120, 121, 122, 123, 772, 773, 774, 775, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 848, 849, 850
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

Differs from A327109 in lacking 116, 117, 118, 119, 124, 125, 126, 127, ...
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity 2 together with their BII-numbers begins:
   52: {{1,2},{1,3},{2,3}}
   53: {{1},{1,2},{1,3},{2,3}}
   54: {{2},{1,2},{1,3},{2,3}}
   55: {{1},{2},{1,2},{1,3},{2,3}}
   60: {{1,2},{3},{1,3},{2,3}}
   61: {{1},{1,2},{3},{1,3},{2,3}}
   62: {{2},{1,2},{3},{1,3},{2,3}}
   63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   84: {{1,2},{1,3},{1,2,3}}
   85: {{1},{1,2},{1,3},{1,2,3}}
   86: {{2},{1,2},{1,3},{1,2,3}}
   87: {{1},{2},{1,2},{1,3},{1,2,3}}
   92: {{1,2},{3},{1,3},{1,2,3}}
   93: {{1},{1,2},{3},{1,3},{1,2,3}}
   94: {{2},{1,2},{3},{1,3},{1,2,3}}
   95: {{1},{2},{1,2},{3},{1,3},{1,2,3}}
  100: {{1,2},{2,3},{1,2,3}}
  101: {{1},{1,2},{2,3},{1,2,3}}
  102: {{2},{1,2},{2,3},{1,2,3}}
  103: {{1},{2},{1,2},{2,3},{1,2,3}}
		

Crossrefs

Positions of 2's in A327144.
Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with spanning edge-connectivity 2 are counted by A327146.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
BII-numbers for spanning edge-connectivity 1 are A327111.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,100],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==2&]

A327109 BII-numbers of set-systems with spanning edge-connectivity >= 2.

Original entry on oeis.org

52, 53, 54, 55, 60, 61, 62, 63, 84, 85, 86, 87, 92, 93, 94, 95, 100, 101, 102, 103, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 772, 773, 774, 775, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826
Offset: 1

Views

Author

Gus Wiseman, Aug 23 2019

Keywords

Comments

Differs from A327108 in having 116, 117, 118, 119, 124, 125, 126, 127, ...
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Examples

			The sequence of all set-systems with spanning edge-connectivity >= 2 together with their BII-numbers begins:
   52: {{1,2},{1,3},{2,3}}
   53: {{1},{1,2},{1,3},{2,3}}
   54: {{2},{1,2},{1,3},{2,3}}
   55: {{1},{2},{1,2},{1,3},{2,3}}
   60: {{1,2},{3},{1,3},{2,3}}
   61: {{1},{1,2},{3},{1,3},{2,3}}
   62: {{2},{1,2},{3},{1,3},{2,3}}
   63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   84: {{1,2},{1,3},{1,2,3}}
   85: {{1},{1,2},{1,3},{1,2,3}}
   86: {{2},{1,2},{1,3},{1,2,3}}
   87: {{1},{2},{1,2},{1,3},{1,2,3}}
   92: {{1,2},{3},{1,3},{1,2,3}}
   93: {{1},{1,2},{3},{1,3},{1,2,3}}
   94: {{2},{1,2},{3},{1,3},{1,2,3}}
   95: {{1},{2},{1,2},{3},{1,3},{1,2,3}}
  100: {{1,2},{2,3},{1,2,3}}
  101: {{1},{1,2},{2,3},{1,2,3}}
  102: {{2},{1,2},{2,3},{1,2,3}}
  103: {{1},{2},{1,2},{2,3},{1,2,3}}
		

Crossrefs

Positions of terms >= 2 in A327144.
Graphs with spanning edge-connectivity >= 2 are counted by A095983.
Graphs with spanning edge-connectivity 2 are counted by A327146.
Set-systems with spanning edge-connectivity 2 are counted by A327130.
BII-numbers for non-spanning edge-connectivity 2 are A327097.
BII-numbers for non-spanning edge-connectivity >= 2 are A327102.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for spanning edge-connectivity 1 are A327111.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[0,1000],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]>=2&]

A327146 Number of labeled simple graphs with n vertices and spanning edge-connectivity 2.

Original entry on oeis.org

0, 0, 0, 1, 9, 227
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

The spanning edge-connectivity of a graph is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty graph.

Crossrefs

Column k = 2 of A327069.
BII-numbers of set-systems with spanning edge-connectivity 2 are A327108.
The generalization to set-systems is A327130.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],spanEdgeConn[Range[n],#]==2&]],{n,0,4}]

A327145 Number of connected set-systems with n vertices and at least one bridge (spanning edge-connectivity 1).

Original entry on oeis.org

0, 1, 4, 56, 4640
Offset: 0

Views

Author

Gus Wiseman, Aug 27 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a disconnected or empty set-system.

Crossrefs

The BII-numbers of these set-systems are A327111.
Set systems with non-spanning edge-connectivity 1 are A327196, with covering case A327129.
Set systems with spanning edge-connectivity 2 are A327130.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==1&]],{n,0,3}]

A327077 Triangle read by rows where T(n,k) is the number of unlabeled simple connected graphs with n vertices and k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 2, 0, 11, 4, 3, 0, 3, 0, 60, 25, 14, 7, 0, 6, 0, 502, 197, 91, 34, 18, 0, 11, 0, 7403, 2454, 826, 267, 100, 44, 0, 23, 0, 197442, 48201, 11383, 2800, 831, 259, 117, 0, 47, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Unlabeled connected graphs with no bridges are counted by A007146 (unlabeled graphs with spanning edge-connectivity >= 2).

Examples

			Triangle begins:
     1
     1    0
     0    1   0
     1    0   1   0
     3    1   0   2   0
    11    4   3   0   3  0
    60   25  14   7   0  6  0
   502  197  91  34  18  0 11  0
  7403 2454 826 267 100 44  0 23 0
  ...
		

Crossrefs

The labeled version is A327072.
Row sums are A001349.
Row sums without the k = 0 column are A052446.
Column k = 0 is A007146, if we assume A007146(0) = 1.
Column k = 1 is A327074.
Column k = n - 1 is A000055.

Extensions

a(21)-a(54) from Andrew Howroyd, Aug 28 2019

A327112 Number of set-systems covering n vertices with cut-connectivity >= 2, or 2-cut-connected set-systems.

Original entry on oeis.org

0, 0, 4, 72, 29856
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			Non-isomorphic representatives of the a(3) = 72 set-systems:
  {{123}}
  {{3}{123}}
  {{23}{123}}
  {{2}{3}{123}}
  {{1}{23}{123}}
  {{3}{23}{123}}
  {{12}{13}{23}}
  {{13}{23}{123}}
  {{1}{2}{3}{123}}
  {{1}{3}{23}{123}}
  {{2}{3}{23}{123}}
  {{3}{12}{13}{23}}
  {{2}{13}{23}{123}}
  {{3}{13}{23}{123}}
  {{12}{13}{23}{123}}
  {{1}{2}{3}{23}{123}}
  {{2}{3}{12}{13}{23}}
  {{1}{2}{13}{23}{123}}
  {{2}{3}{13}{23}{123}}
  {{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}}
  {{1}{2}{3}{13}{23}{123}}
  {{2}{3}{12}{13}{23}{123}}
  {{1}{2}{3}{12}{13}{23}{123}}
		

Crossrefs

Covering 2-cut-connected graphs are A013922, if we assume A013922(2) = 1.
Covering 1-cut-connected antichains (clutters) are A048143, if we assume A048143(0) = A048143(1) =0.
Covering 2-cut-connected antichains (blobs) are A275307, if we assume A275307(1) = 0.
Covering set-systems with cut-connectivity 2 are A327113.
2-vertex-connected integer partitions are A322387.
BII-numbers of set-systems with cut-connectivity >= 2 are A327101.
The cut-connectivity of the set-system with BII-number n is A326786(n).

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]>=2&]],{n,0,3}]

A327113 Number of set-systems covering n vertices with cut-connectivity 2.

Original entry on oeis.org

0, 0, 4, 0, 4752
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. Elements of a set-system are sometimes called edges. The cut-connectivity of a set-system is the minimum number of vertices that must be removed (along with any empty or duplicate edges) to obtain a disconnected or empty set-system. Except for cointersecting set-systems (A327040), this is the same as vertex-connectivity (A327334, A327051).

Examples

			The a(2) = 4 set-systems:
  {{1,2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Covering graphs with cut-connectivity >= 2 are A013922, if we assume A013922(2) = 1.
Covering antichains (blobs) with cut-connectivity >= 2 are A275307, if we assume A275307(1) = 0.
2-vertex-connected integer partitions are A322387.
Connected covering set-systems are A323818.
Covering set-systems with cut-connectivity >= 2 are A327112.
The cut-connectivity of the set-system with BII-number n is A326786(n).
BII-numbers of set-systems with cut-connectivity 2 are A327082.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vConn[sys_]:=If[Length[csm[sys]]!=1,0,Min@@Length/@Select[Subsets[Union@@sys],Function[del,Length[csm[DeleteCases[DeleteCases[sys,Alternatives@@del,{2}],{}]]]!=1]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&vConn[#]==2&]],{n,0,3}]

A327147 Smallest BII-number of a set-system with spanning edge-connectivity n.

Original entry on oeis.org

0, 1, 52, 116, 3952, 8052
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			The sequence of terms together with their corresponding set-systems begins:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

The same for cut-connectivity is A327234.
The same for non-spanning edge-connectivity is A002450.
The spanning edge-connectivity of the set-system with BII-number n is A327144(n).
Showing 1-10 of 11 results. Next