cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327319 a(n) = binomial(n, 2) + 6*binomial(n, 4).

Original entry on oeis.org

0, 0, 1, 3, 12, 40, 105, 231, 448, 792, 1305, 2035, 3036, 4368, 6097, 8295, 11040, 14416, 18513, 23427, 29260, 36120, 44121, 53383, 64032, 76200, 90025, 105651, 123228, 142912, 164865, 189255, 216256, 246048, 278817, 314755, 354060, 396936
Offset: 0

Views

Author

Aaron Kemats, Sep 17 2019

Keywords

Comments

a(n) is the number of ternary strings of length n that have exactly two 2's, zero or two 1's, and have no restriction on the number of 0's. For example, a(6)=105 since the strings are the 90 permutations of 221100 and the 15 permutations of 220000. - Enrique Navarrete, May 19 2025

Examples

			a(5) = binomial(5, 2) + 6*binomial(5, 4) = 10 + 6*5 = 40.
		

Programs

  • Mathematica
    Table[Binomial[n, 2] + 6Binomial[n, 4], {n, 0, 39}] (* Alonso del Arte, Sep 18 2019 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,1,3,12},40] (* Harvey P. Dale, Dec 10 2022 *)
  • PARI
    a(n) = {binomial(n, 2) + 6 * binomial(n, 4)} \\ Andrew Howroyd, Sep 20 2019
    
  • PARI
    concat([0,0], Vec(x^2*(1 - 2*x + 7*x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Sep 25 2019

Formula

From Colin Barker, Sep 21 2019: (Start)
G.f.: x^2*(1 - 2*x + 7*x^2) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>4.
a(n) = (n*(-8 + 13*n - 6*n^2 + n^3)) / 4. (End)
E.g.f.: (1/4)*exp(x)*x^2*(2 + x^2). - Stefano Spezia, Sep 21 2019