A327498 Maximum divisor of n whose prime multiplicities are distinct (A130091).
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 5, 16, 17, 18, 19, 20, 7, 11, 23, 24, 25, 13, 27, 28, 29, 5, 31, 32, 11, 17, 7, 18, 37, 19, 13, 40, 41, 7, 43, 44, 45, 23, 47, 48, 49, 50, 17, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 31, 63, 64, 13, 11, 67, 68, 23
Offset: 1
Examples
The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- Gus Wiseman, Sequences counting and encoding certain classes of multisets
Crossrefs
Programs
-
Mathematica
Table[Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}]
-
PARI
a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ David A. Corneth, Sep 17 2019
-
PARI
A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2])))); A327498(n) = fordiv(n,d,if(A351564(n/d), return(n/d))); \\ Antti Karttunen, Apr 02 2022
Formula
a(n) = n / A327499(n). - Antti Karttunen, Apr 02 2022
Comments