A327638 a(0)=1, a(1)=5; for n > 2, a(n) is the smallest odd number j not divisible by 3 such that (3*j+1)/2^k = a(n-1) for some k.
1, 5, 13, 17, 11, 7, 37, 49, 65, 43, 229, 305, 203, 541, 721, 961, 5125, 6833, 4555, 6073, 32389, 172741, 230321, 153547, 818917, 4367557, 5823409, 7764545, 5176363, 6901817, 18404845, 98159173, 523515589, 2792083141, 3722777521, 19854813445, 105892338373
Offset: 0
Keywords
Examples
a(0)=1, a(1)=5 by definition, then a(2) = (2*5-1)/3 or (8*5-1)/3; as (2*5-1)/3 is divisible by 3, a(2) = (8*5-1)/3 = 13.
Links
- Michel Marcus, Table of n, a(n) for n = 0..295
Programs
-
PARI
lista(nn) = {print1(1, ", ", 5); x = 5; for (n = 2, nn, if(x%3 == 1, x = (4*x-1)/3, x = (2*x-1)/3); if(x%3 == 0, x = 4*x + 1); print1(", ", x)); } \\ Jinyuan Wang, Sep 21 2019
Formula
If a(n-1) == 1 (mod 3) then a(n) = (4*a(n-1)-1)/3 or (16*a(n-1)-1)/3, whichever value is not divisible by 3.
If a(n-1) == -1 (mod 3) then a(n) = (2*a(n-1)-1)/3 or a(n)=(8*a(n-1)-1)/3, whichever value is not divisible by 3.
Extensions
More terms from Jinyuan Wang, Sep 21 2019
Comments