cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A327749 Natural numbers whose sum of prime factors (with repetition) is palindromic in base 10.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 24, 27, 28, 40, 45, 48, 54, 57, 62, 85, 101, 102, 106, 116, 121, 123, 131, 151, 181, 182, 191, 194, 218, 259, 260, 278, 292, 298, 305, 308, 312, 313, 351, 353, 358, 366, 370, 373, 383, 388, 403, 413, 415, 428, 440, 444, 483, 495, 498
Offset: 1

Views

Author

Robert Bilinski, Sep 23 2019

Keywords

Comments

Union of 1, A046352 and the palindromic primes (A002385). - Corrected by Robert Israel, Nov 20 2020

References

  • Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.

Crossrefs

Programs

  • Magma
    [1] cat [k: k in [2..500]| Intseq(a) eq Reverse(Intseq(a)) where a is &+[m[1]*m[2]: m in Factorization(k)]]; // Marius A. Burtea, Sep 27 2019
  • Maple
    ispali:= proc(n) option remember; local L; L:= convert(n,base,10); evalb(L = ListTools:-Reverse(L)) end proc:
    spf:= proc(n) add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    select(t -> ispali(spf(t)), [$0..1000]); # Robert Israel, Nov 20 2020
  • Mathematica
    sopfr[1] = 0; sopfr[n_] := Plus @@ (Times @@@ FactorInteger[n]); aQ[n_] := PalindromeQ[sopfr[n]]; Select[Range[500], aQ] (* Amiram Eldar, Sep 23 2019 *)
  • PARI
    sopfr(n) = (n=factor(n))[, 1]~*n[, 2]; \\ A001414
    isok(n) = my(d=digits(sopfr(n))); d == Vecrev(d); \\ Michel Marcus, Sep 27 2019