A327786 Numbers whose number of distinct prime factors is greater than the sum of their digits.
10, 100, 110, 210, 1000, 1001, 1010, 1020, 1100, 1110, 2010, 2100, 10000, 10010, 10020, 10100, 10101, 10110, 10200, 11000, 11010, 11100, 20010, 20020, 20100, 21000, 100000, 100002, 100010, 100011, 100020, 100100, 100110, 100200, 101000, 101010, 101100, 102000
Offset: 1
Examples
For a(4) = 210, 2 + 1 + 0 = 3, 210 = 2*3*5*7 with 4 distinct factors, 4 > 3 so 210 is a term.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 291 terms from Metin Sariyar)
Programs
-
Magma
[k:k in [2..110000]| #PrimeDivisors(k) gt &+Intseq(k)]; // Marius A. Burtea, Oct 07 2019
-
Mathematica
Select[Range[10^6], Total[IntegerDigits[#]]
Total[IntegerDigits[#]]&] (* Harvey P. Dale, Jul 07 2020 *) -
PARI
isok(n) = omega(n) > sumdigits(n); \\ Michel Marcus, Sep 25 2019
Comments