cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A358833 Number of rectangular twice-partitions of n of type (P,R,P).

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 17, 16, 32, 34, 56, 57, 119, 102, 179, 199, 335, 298, 598, 491, 960, 925, 1441, 1256, 2966, 2026, 3726, 3800, 6488, 4566, 11726, 6843, 16176, 14109, 21824, 16688, 49507, 21638, 50286, 50394, 99408, 44584, 165129, 63262, 208853, 205109, 248150
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2022

Keywords

Comments

A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n, so these are twice-partitions of n into partitions with constant lengths and constant sums.

Examples

			The a(1) = 1 through a(5) = 8 twice-partitions:
  (1)  (2)     (3)        (4)           (5)
       (11)    (21)       (22)          (32)
       (1)(1)  (111)      (31)          (41)
               (1)(1)(1)  (211)         (221)
                          (1111)        (311)
                          (2)(2)        (2111)
                          (11)(11)      (11111)
                          (1)(1)(1)(1)  (1)(1)(1)(1)(1)
		

Crossrefs

This is the rectangular case of A279787.
This is the case of A306319 with constant sums.
For distinct instead of constant lengths and sums we have A358832.
The version for multiset partitions of integer partitions is A358835.
A063834 counts twice-partitions, strict A296122, row-sums of A321449.
A281145 counts same-trees.

Programs

  • Mathematica
    twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}];
    Table[Length[Select[twiptn[n],SameQ@@Length/@#&&SameQ@@Total/@#&]],{n,0,10}]
  • PARI
    P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
    seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2022

A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums.

Original entry on oeis.org

1, 1, 3, 4, 8, 8, 17, 16, 31, 34, 54, 57, 108, 102, 166, 191, 294, 298, 504, 491, 803, 843, 1251, 1256, 2167, 1974, 3133, 3226, 4972, 4566, 8018, 6843, 11657, 11044, 17217, 15010, 28422, 21638, 38397, 35067, 58508, 44584, 91870, 63262, 125114, 106264, 177483
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2022

Keywords

Examples

			The a(1) = 1 through a(6) = 17 multiset partitions:
  {1}  {2}     {3}        {4}           {5}              {6}
       {11}    {12}       {13}          {14}             {15}
       {1}{1}  {111}      {22}          {23}             {24}
               {1}{1}{1}  {112}         {113}            {33}
                          {1111}        {122}            {114}
                          {2}{2}        {1112}           {123}
                          {11}{11}      {11111}          {222}
                          {1}{1}{1}{1}  {1}{1}{1}{1}{1}  {1113}
                                                         {1122}
                                                         {3}{3}
                                                         {11112}
                                                         {111111}
                                                         {12}{12}
                                                         {2}{2}{2}
                                                         {111}{111}
                                                         {11}{11}{11}
                                                         {1}{1}{1}{1}{1}{1}
		

Crossrefs

For just constant sums we have A305551, ranked by A326534.
For just constant lengths we have A319066, ranked by A320324.
The version for set partitions is A327899.
For distinct instead of constant lengths and sums we have A358832.
The version for twice-partitions is A358833.
A001970 counts multiset partitions of integer partitions.
A063834 counts twice-partitions, strict A296122.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}]
  • PARI
    P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n))
    seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ Andrew Howroyd, Dec 31 2022

Formula

a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - Andrew Howroyd, Dec 31 2022

Extensions

Terms a(41) and beyond from Andrew Howroyd, Dec 31 2022

A327899 Number of set partitions of {1..n} with equal block sizes and equal block sums.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 6, 3, 2, 1, 63, 1, 2, 317, 657, 1, 4333, 1, 9609
Offset: 0

Views

Author

Gus Wiseman, Sep 29 2019

Keywords

Examples

			The a(8) = 6 set partitions:
     {{1,2,3,4,5,6,7,8}}
    {{1,2,7,8},{3,4,5,6}}
    {{1,3,6,8},{2,4,5,7}}
    {{1,4,5,8},{2,3,6,7}}
    {{1,4,6,7},{2,3,5,8}}
  {{1,8},{2,7},{3,6},{4,5}}
		

Crossrefs

Set partitions with equal block-sizes are A038041.
Set partitions with equal block-sums are A035470.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],And[SameQ@@Length/@#,SameQ@@Total/@#]&]],{n,0,8}]

A327900 Nonprime squarefree numbers whose prime indices all have the same Omega (number of prime factors counted with multiplicity).

Original entry on oeis.org

1, 15, 33, 51, 55, 85, 91, 93, 123, 155, 161, 165, 177, 187, 201, 203, 205, 249, 255, 295, 299, 301, 327, 329, 335, 341, 377, 381, 415, 451, 465, 471, 511, 527, 537, 545, 553, 559, 561, 573, 611, 615, 633, 635, 649, 667, 679, 697, 703, 707, 723, 737, 785, 831
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
   15: {2,3}
   33: {2,5}
   51: {2,7}
   55: {3,5}
   85: {3,7}
   91: {4,6}
   93: {2,11}
  123: {2,13}
  155: {3,11}
  161: {4,9}
  165: {2,3,5}
  177: {2,17}
  187: {5,7}
  201: {2,19}
  203: {4,10}
  205: {3,13}
  249: {2,23}
  255: {2,3,7}
  295: {3,17}
		

Crossrefs

The case including primes and nonsquarefree numbers is A320324.
The version for sum of prime indices is A327901.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@PrimeOmega/@PrimePi/@First/@FactorInteger[#]&]

A327901 Nonprime squarefree numbers whose prime indices all have the same sum of prime indices (A056239).

Original entry on oeis.org

1, 35, 143, 209, 247, 391, 493, 629, 667, 851, 901, 1073, 1219, 1333, 1457, 1537, 1891, 1961, 2021, 2201, 2623, 2717, 2759, 2867, 2993, 3053, 3239, 3337, 3827, 3977, 4061, 4183, 4223, 4331, 4387, 4633, 5429, 5633, 5767, 5959, 6157, 6191, 6319, 7081, 7093, 7519
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
    35: {3,4}
   143: {5,6}
   209: {5,8}
   247: {6,8}
   391: {7,9}
   493: {7,10}
   629: {7,12}
   667: {9,10}
   851: {9,12}
   901: {7,16}
  1073: {10,12}
  1219: {9,16}
  1333: {11,14}
  1457: {11,15}
  1537: {10,16}
  1891: {11,18}
  1961: {12,16}
  2021: {14,15}
  2201: {11,20}
		

Crossrefs

The version including primes and nonsquarefree numbers is A326534.
The version for number of prime indices is A327900.
The version for mean of prime indices is A327902.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Total/@primeMS/@primeMS[#]&];

A327902 Nonprime squarefree numbers whose prime indices all have the same average of prime indices (A326567/A326568).

Original entry on oeis.org

1, 21, 57, 115, 133, 145, 159, 371, 393, 399, 515, 535, 565, 667, 803, 869, 917, 933, 1007, 1067, 1113, 1963, 2021, 2095, 2157, 2165, 2177, 2249, 2285, 2315, 2363, 2369, 2461, 2489, 2599, 2705, 2751, 2839, 2987, 3021, 3103, 3277, 3335, 3707, 3859, 4331, 4367
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
    21: {2,4}
    57: {2,8}
   115: {3,9}
   133: {4,8}
   145: {3,10}
   159: {2,16}
   371: {4,16}
   393: {2,32}
   399: {2,4,8}
   515: {3,27}
   535: {3,28}
   565: {3,30}
   667: {9,10}
   803: {5,21}
   869: {5,22}
   917: {4,32}
   933: {2,64}
  1007: {8,16}
  1067: {5,25}
		

Crossrefs

The version including primes and nonsquarefree numbers is A326536.
The version for number of prime indices is A327900.
The version for sum of prime indices is A327901.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],!PrimeQ[#]&&SquareFreeQ[#]&&SameQ@@Mean/@primeMS/@primeMS[#]&];
Showing 1-6 of 6 results.