cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A309985 Maximum determinant of an n X n Latin square.

Original entry on oeis.org

1, 1, 3, 18, 160, 2325, 41895, 961772, 26978400, 929587995
Offset: 0

Views

Author

Hugo Pfoertner, Aug 26 2019

Keywords

Comments

a(n) = A301371(n) for n <= 7. a(8) < A301371(8) = 27296640, a(9) < A301371(9) = 933251220.
a(10) = 36843728625, conjectured. See Stack Exchange link. - Hugo Pfoertner, Sep 29 2019
A328030(n) <= a(n) <= A301371(n). - Hugo Pfoertner, Dec 02 2019
It is unknown, but very likely, that A301371(n) > a(n) also holds for all n > 9 - Hugo Pfoertner, Dec 12 2020

Examples

			An example of an 8 X 8 Latin square with maximum determinant is
  [7  1  3  4  8  2  5  6]
  [1  7  4  3  6  5  2  8]
  [3  4  1  7  2  6  8  5]
  [4  3  7  1  5  8  6  2]
  [8  6  2  5  4  7  1  3]
  [2  5  6  8  7  3  4  1]
  [5  2  8  6  1  4  3  7]
  [6  8  5  2  3  1  7  4].
An example of a 9 X 9 Latin square with maximum determinant is
  [9  4  3  8  1  5  2  6  7]
  [3  9  8  5  4  6  1  7  2]
  [4  1  9  3  2  8  7  5  6]
  [1  2  4  9  7  3  6  8  5]
  [8  3  5  6  9  7  4  2  1]
  [2  7  1  4  6  9  5  3  8]
  [5  8  6  7  3  2  9  1  4]
  [7  6  2  1  5  4  8  9  3]
  [6  5  7  2  8  1  3  4  9].
An example of a 10 X 10 Latin square with abs(determinant) = 36843728625 is a circulant matrix with first row [1, 3, 7, 9, 8, 6, 5, 4, 2, 10], but it is not known if this is the best possible. - _Kebbaj Mohamed Reda_, Nov 27 2019 (reworded by _Hugo Pfoertner_)
		

Crossrefs

Extensions

a(9) from Hugo Pfoertner, Aug 30 2019
a(0)=1 prepended by Alois P. Heinz, Oct 02 2019

A328030 Maximum determinant of a circulant n X n matrix whose rows are permutations of [1,2,..,n].

Original entry on oeis.org

1, 1, 3, 18, 160, 2325, 41895, 961772, 26978400, 929587995, 36843728625, 1705290814194, 89802671542272, 5336424046419557, 354379732734283200, 26173529641406219400
Offset: 0

Views

Author

Hugo Pfoertner, Oct 02 2019

Keywords

Comments

It is conjectured that A309985 is identical to this sequence. See Mathematics Stack Exchange link. The first rows of the corresponding circulant matrices are provided in A328029.

Crossrefs

Formula

a(n) = A309985(n) for n <= 9.
a(n) <= A328031(n).

Extensions

a(15) from Hugo Pfoertner, Oct 14 2019

A328062 Lexicographically earliest permutation of [1,2,...,n] minimizing the positive value of the determinant of an n X n circulant matrix that uses this permutation as first row, written as triangle T(n,k), k <= n.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 3, 1, 4, 2, 1, 2, 4, 5, 3, 1, 2, 4, 5, 6, 3, 1, 2, 4, 6, 7, 5, 3, 3, 1, 5, 4, 8, 6, 7, 2, 1, 2, 4, 6, 8, 9, 7, 5, 3, 5, 1, 7, 3, 8, 4, 10, 6, 9, 2, 1, 2, 3, 8, 6, 4, 9, 10, 11, 5, 7, 3, 1, 5, 4, 9, 8, 12, 10, 11, 6, 7, 2, 1, 2, 3, 5, 8, 7, 6, 9, 11, 12, 13, 10, 4
Offset: 1

Views

Author

Hugo Pfoertner, Oct 03 2019

Keywords

Examples

			The triangle starts
  1;
  2,  1;
  1,  2,  3;
  3,  1,  4,  2;
  1,  2,  4,  5,  3;
  1,  2,  4,  5,  6,  3;
  1,  2,  4,  6,  7,  5,  3;
  3,  1,  5,  4,  8,  6,  7,  2;
  1,  2,  4,  6,  8,  9,  7,  5,  3;
  5,  1,  7,  3,  8,  4, 10,  6,  9,  2;
.
The 4th row of the triangle T(4,1)..T(4,4) = a(7)..a(10) is [3,1,4,2] because this is the lexicographically earliest permutation of [1,2,3,4] producing a circulant 4 X 4 matrix with minimum positive determinant A309257(4) = 80.
  [3, 1, 4, 2;
   2, 3, 1, 4;
   4, 2, 3, 1;
   1, 4, 2, 3].
All lexicographically earlier permutations lead to the other possible determinants -160, -80, 0, 160 with [1,3,2,4], [1,4,3,2], [2,3,1,4], and [2,4,1,3] producing determinants = -80.
		

Crossrefs

Showing 1-3 of 3 results.