A301371
Maximum determinant of an n X n matrix with n copies of the numbers 1 .. n.
Original entry on oeis.org
1, 1, 3, 18, 160, 2325, 41895, 961772, 27296640, 933251220
Offset: 0
Matrices with maximum determinants:
a(2) = 3:
(2 1)
(1 2)
a(3) = 18:
(3 1 2)
(2 3 1)
(1 2 3)
a(4) = 160:
(4 3 2 1)
(1 4 3 2)
(3 1 4 3)
(2 2 1 4)
a(5) = 2325:
(5 3 1 2 4)
(2 5 4 1 3)
(4 1 5 3 2)
(3 4 2 5 1)
(1 2 3 4 5)
a(6) = 41895:
(6 1 4 2 3 5)
(3 6 2 1 5 4)
(4 5 6 3 2 1)
(5 3 1 6 4 2)
(1 2 5 4 6 3)
(2 4 3 5 1 6)
a(7) = 961772:
(7 2 3 5 1 4 6)
(3 7 6 4 2 1 5)
(2 1 7 6 4 5 3)
(4 5 1 7 6 3 2)
(6 3 5 1 7 2 4)
(5 6 4 2 3 7 1)
(1 4 2 3 5 6 7)
a(8) = 27296640:
(8 8 3 5 4 3 4 1)
(1 8 6 3 1 6 6 5)
(5 3 8 1 7 6 4 2)
(5 1 6 8 2 4 7 3)
(1 5 2 7 8 6 4 3)
(7 3 2 4 3 8 2 7)
(5 4 2 2 6 2 8 7)
(4 5 7 6 5 1 1 7)
a(n) is an upper bound for the determinant of an n X n Latin square. a(n) = A309985(n) for n <= 7. a(8) > A309985(8). - _Hugo Pfoertner_, Aug 26 2019
From _Hugo Pfoertner_, Nov 04 2020: (Start)
a(9) = 933251220, achieved by a Non-Latin square:
(9 5 5 3 3 2 2 8 8)
(4 9 2 6 7 5 3 1 8)
(4 7 9 2 1 8 6 3 5)
(6 3 7 9 4 1 8 2 5)
(6 2 8 5 9 7 1 4 3)
(7 4 1 8 2 9 5 6 3)
(7 6 3 1 8 4 9 5 2)
(1 8 6 7 5 3 4 9 2)
(1 1 4 4 6 6 7 7 9)
found by Oleg Vlasii as an answer to the IBM Ponder This Challenge November 2019. See links. (End)
- Ortwin Gasper, Hugo Pfoertner and Markus Sigg, An Upper Bound for the Determinant of a Matrix with given Entry Sum and Square Sum, JIPAM, Journal of Inequalities in Pure and Applied Mathematics, Volume 10, Issue 3, Article 63, 2008.
- IBM Research, Large 9x9 determinant, Ponder This Challenge November 2019.
- Markus Sigg, Gasper's determinant theorem, revisited, arXiv:1804.02897 [math.CO], 2018.
- Oleg Vlasii, Determinant-OEIS-A301371-9, program and description, 4 Dec 2019.
- Index entries for sequences related to maximal determinants
A309985
Maximum determinant of an n X n Latin square.
Original entry on oeis.org
1, 1, 3, 18, 160, 2325, 41895, 961772, 26978400, 929587995
Offset: 0
An example of an 8 X 8 Latin square with maximum determinant is
[7 1 3 4 8 2 5 6]
[1 7 4 3 6 5 2 8]
[3 4 1 7 2 6 8 5]
[4 3 7 1 5 8 6 2]
[8 6 2 5 4 7 1 3]
[2 5 6 8 7 3 4 1]
[5 2 8 6 1 4 3 7]
[6 8 5 2 3 1 7 4].
An example of a 9 X 9 Latin square with maximum determinant is
[9 4 3 8 1 5 2 6 7]
[3 9 8 5 4 6 1 7 2]
[4 1 9 3 2 8 7 5 6]
[1 2 4 9 7 3 6 8 5]
[8 3 5 6 9 7 4 2 1]
[2 7 1 4 6 9 5 3 8]
[5 8 6 7 3 2 9 1 4]
[7 6 2 1 5 4 8 9 3]
[6 5 7 2 8 1 3 4 9].
An example of a 10 X 10 Latin square with abs(determinant) = 36843728625 is a circulant matrix with first row [1, 3, 7, 9, 8, 6, 5, 4, 2, 10], but it is not known if this is the best possible. - _Kebbaj Mohamed Reda_, Nov 27 2019 (reworded by _Hugo Pfoertner_)
A328029
Lexicographically earliest permutation of [1,2,...,n] maximizing the determinant of an n X n circulant matrix that uses this permutation as first row, written as triangle T(n,k), k <= n.
Original entry on oeis.org
1, 2, 1, 1, 2, 3, 2, 1, 4, 3, 1, 2, 4, 3, 5, 2, 1, 6, 3, 5, 4, 1, 2, 4, 6, 5, 3, 7, 2, 1, 5, 4, 8, 3, 6, 7, 1, 2, 4, 8, 6, 7, 5, 3, 9, 1, 2, 10, 7, 8, 3, 9, 5, 4, 6, 1, 2, 6, 11, 7, 9, 4, 8, 5, 3, 10, 2, 1, 7, 3, 12, 5, 9, 10, 4, 6, 11, 8, 1, 2, 12, 13, 5, 10, 6, 11, 3, 9, 8, 4, 7
Offset: 1
The triangle starts
1;
2, 1;
1, 2, 3;
2, 1, 4, 3;
1, 2, 4, 3, 5;
2, 1, 6, 3, 5, 4;
1, 2, 4, 6, 5, 3, 7;
2, 1, 5, 4, 8, 3, 6, 7;
1, 2, 4, 8, 6, 7, 5, 3, 9;
1, 2, 10, 7, 8, 3, 9, 5, 4, 6;
.
The 4th row of the triangle T(4,1)..T(4,4) = a(7)..a(10) is [2,1,4,3] because this is the lexicographically earliest permutation of [1,2,3,4] producing a circulant 4 X 4 matrix with maximum determinant A328030(4) = 160.
[2, 1, 4, 3;
3, 2, 1, 4;
4, 3, 2, 1;
1, 4, 3, 2].
All lexicographically earlier permutations lead to smaller determinants, with [1,2,3,4] and [1,4,3,2] producing determinants = -160.
-
f[n_] := (p = Permutations[Table[i, {i, n}]]; L = Length[p]; det = Max[Table[Det[Reverse /@ Partition[p[[i]], n, 1, {1, 1}]], {i, 1, L}]]; mat = Table[Reverse /@ Partition[p[[i]], n, 1, {1, 1}], {i, 1, L}]);
n = 1; While[n <= 10, ClearSystemCache[[]]; f[n]; triangle = Parallelize[Select[mat, Max[Det[#]] == det &]]; Print[SortBy[triangle, Less][[1]][[1]]]; n++]; (* Kebbaj Mohamed Reda, Dec 03 2019; edited by Michel Marcus, Dec 24 2023 *)
A328031
Upper bound for the determinant of an n X n matrix whose entries are a permutation of the multiset {1^n,...,n^n}.
Original entry on oeis.org
1, 1, 3, 18, 172, 2343, 42439, 976050, 27583338, 934173632, 37180409223, 1711870023666, 90007747560742, 5346164992890599, 355442084718552178, 26244000000000000000, 2137205155719002036203, 190811368062993357765186, 18577775646585813239195436, 1963166636163973976912956096
Offset: 0
-
for(n=1,20,print1(floor(n^n*((n+1)/2)*((n+1)/12)^((n-1)/2)),", "))
A328062
Lexicographically earliest permutation of [1,2,...,n] minimizing the positive value of the determinant of an n X n circulant matrix that uses this permutation as first row, written as triangle T(n,k), k <= n.
Original entry on oeis.org
1, 2, 1, 1, 2, 3, 3, 1, 4, 2, 1, 2, 4, 5, 3, 1, 2, 4, 5, 6, 3, 1, 2, 4, 6, 7, 5, 3, 3, 1, 5, 4, 8, 6, 7, 2, 1, 2, 4, 6, 8, 9, 7, 5, 3, 5, 1, 7, 3, 8, 4, 10, 6, 9, 2, 1, 2, 3, 8, 6, 4, 9, 10, 11, 5, 7, 3, 1, 5, 4, 9, 8, 12, 10, 11, 6, 7, 2, 1, 2, 3, 5, 8, 7, 6, 9, 11, 12, 13, 10, 4
Offset: 1
The triangle starts
1;
2, 1;
1, 2, 3;
3, 1, 4, 2;
1, 2, 4, 5, 3;
1, 2, 4, 5, 6, 3;
1, 2, 4, 6, 7, 5, 3;
3, 1, 5, 4, 8, 6, 7, 2;
1, 2, 4, 6, 8, 9, 7, 5, 3;
5, 1, 7, 3, 8, 4, 10, 6, 9, 2;
.
The 4th row of the triangle T(4,1)..T(4,4) = a(7)..a(10) is [3,1,4,2] because this is the lexicographically earliest permutation of [1,2,3,4] producing a circulant 4 X 4 matrix with minimum positive determinant A309257(4) = 80.
[3, 1, 4, 2;
2, 3, 1, 4;
4, 2, 3, 1;
1, 4, 2, 3].
All lexicographically earlier permutations lead to the other possible determinants -160, -80, 0, 160 with [1,3,2,4], [1,4,3,2], [2,3,1,4], and [2,4,1,3] producing determinants = -80.
Showing 1-5 of 5 results.
Comments