cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A328180 a(n) is the maximum number of 5-cycles possible in an n-vertex planar graph.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 24, 41, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324, 4512
Offset: 0

Views

Author

Stefano Spezia, Oct 06 2019

Keywords

Comments

All the terms are even numbers except for a(7) = 41 which is also the only prime.
For n >= 5, also the number of 5-cycles in the (n-2)-dipyramidal graph. - Eric W. Weisstein, Dec 07 2023

Crossrefs

Programs

  • Magma
    I:=[0, 0, 0, 0, 0, 6, 24, 41, 60, 84, 112]; [n le 11 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..51]];
    
  • Magma
    R:=PowerSeriesRing(Integers(),51); [0,0,0,0,0] cat Coefficients(R!(x^5*(-6-6*x+13*x^2-3*x^3-3*x^4+x^5)/(-1+x)^3)); // Marius A. Burtea, Oct 16 2019
  • Maple
    gf := (1/5040)*x^7-(1/20)*x^5-(1/6)*x^4+2*exp(x)*x^2-8*exp(x)*x-4*x+12*exp(x)-12; ser := series(gf, x, 51); seq(factorial(n)*coeff(ser, x, n), n = 0..50)
  • Mathematica
    Join[{0,0,0,0,0,6,24,41},Table[2n^2-10n+12,{n,8,50}]]
    LinearRecurrence[{3,-3,1},{0,0,0,0,0,6,24,41,60,84,112},60] (* Harvey P. Dale, Jan 10 2022 *)
  • PARI
    concat([0, 0, 0, 0, 0], Vec(x^5*(-6-6*x+13*x^2-3*x^3-3*x^4+x^5)/(-1+x)^3+O(x^51)))
    

Formula

O.g.f.: x^5*(-6 - 6*x + 13*x^2 - 3*x^3 - 3*x^4 + x^5)/(-1 + x)^3.
E.g.f.: x^7/5040 - x^5/20 - x^4/6 + 2*exp(x)*x^2 - 8*exp(x)*x - 4*x + 12*exp(x) - 12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 10.
a(n) = 0 for n < 5, a(5) = 6, a(6) = 24, a(7) = 41, a(n) = 2*n^2 - 10*n + 12 for n > 7 (see Theorem 1 in Győri et al.).
a(n) = A046092(n-3) for n > 7.
a(n) = A106232(n-2) for n > 7.