A328180 a(n) is the maximum number of 5-cycles possible in an n-vertex planar graph.
0, 0, 0, 0, 0, 6, 24, 41, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324, 4512
Offset: 0
Links
- Stefano Spezia, Table of n, a(n) for n = 0..10000
- Debarun Ghosh, Ervin Győri, Oliver Janzer, Addisu Paulos, Nika Salia, and Oscar Zamora, The maximum number of induced C_5's in a planar graph, arXiv:2004.01162 [math.CO], 2020.
- Ervin Győri, Addisu Paulos, Nika Salia, Casey Tompkins, and Oscar Zamora, The Maximum Number of Pentagons in a Planar Graph, arXiv:1909.13532 [math.CO], 2019.
- S. L. Hakimi and E. F. Schmeichel, On the number of cycles of length k in a maximal planar graph, J. Graph Theory 3 (1979): 69-86.
- Eric Weisstein's World of Mathematics, Dipyramidal Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[0, 0, 0, 0, 0, 6, 24, 41, 60, 84, 112]; [n le 11 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..51]];
-
Magma
R
:=PowerSeriesRing(Integers(),51); [0,0,0,0,0] cat Coefficients(R!(x^5*(-6-6*x+13*x^2-3*x^3-3*x^4+x^5)/(-1+x)^3)); // Marius A. Burtea, Oct 16 2019 -
Maple
gf := (1/5040)*x^7-(1/20)*x^5-(1/6)*x^4+2*exp(x)*x^2-8*exp(x)*x-4*x+12*exp(x)-12; ser := series(gf, x, 51); seq(factorial(n)*coeff(ser, x, n), n = 0..50)
-
Mathematica
Join[{0,0,0,0,0,6,24,41},Table[2n^2-10n+12,{n,8,50}]] LinearRecurrence[{3,-3,1},{0,0,0,0,0,6,24,41,60,84,112},60] (* Harvey P. Dale, Jan 10 2022 *)
-
PARI
concat([0, 0, 0, 0, 0], Vec(x^5*(-6-6*x+13*x^2-3*x^3-3*x^4+x^5)/(-1+x)^3+O(x^51)))
Formula
O.g.f.: x^5*(-6 - 6*x + 13*x^2 - 3*x^3 - 3*x^4 + x^5)/(-1 + x)^3.
E.g.f.: x^7/5040 - x^5/20 - x^4/6 + 2*exp(x)*x^2 - 8*exp(x)*x - 4*x + 12*exp(x) - 12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 10.
a(n) = 0 for n < 5, a(5) = 6, a(6) = 24, a(7) = 41, a(n) = 2*n^2 - 10*n + 12 for n > 7 (see Theorem 1 in Győri et al.).
a(n) = A046092(n-3) for n > 7.
a(n) = A106232(n-2) for n > 7.
Comments