A328095 Revenant numbers: numbers k such that k multiplied by the product of all its digits contains k as a substring.
0, 1, 5, 6, 11, 25, 52, 77, 87, 111, 125, 152, 215, 251, 375, 376, 455, 512, 521, 545, 554, 736, 792, 1111, 1125, 1152, 1215, 1251, 1455, 1512, 1521, 1545, 1554, 2115, 2151, 2174, 2255, 2511, 2525, 2552, 4155, 4515, 4551, 5112, 5121, 5145, 5154, 5211, 5225, 5252, 5415, 5451, 5514, 5522, 5541, 5558, 5585, 5855, 8555, 8772, 9375
Offset: 1
Examples
87 * 8 * 7 = 4872. As the string 87 is visible in the result, 87 is a revenant. So is 792 because 792 * 7 * 9 * 2 = 99792. And so is 9375 as 9375 * 9 * 3 * 7 * 5 = 8859375.
References
- Eric Angelini, Posting to Sequence Fans Mailing List, Oct 19 2019
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Eric Angelini, Revenant Numbers, Cinquante Signes, Oct 19 2019.
- Eric Angelini, Revenant Numbers, Cinquante Signes, Oct 19 2019. [Cached copy, pdf file, with permission]
Programs
-
Maple
a:= proc(n) option remember; local k; if n=1 then 0 else for k from 1+a(n-1) while searchtext(cat(k), cat(k* mul(i, i=convert(k, base, 10))))=0 do od: k fi end: seq(a(n), n=1..75); # Alois P. Heinz, Oct 19 2019
-
Mathematica
Select[Range[0,10000],SequenceCount[IntegerDigits[#*(Times@@IntegerDigits[ #])],IntegerDigits[#]]>0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 19 2019 *)
-
PARI
is_A328095(n)={my(d,m); if(d=vecprod(digits(n))*n, m=10^logint(n, 10)*10; until(n>d\=10,d%m==n && return(1)),!n)} \\ M. F. Hasler, Oct 20 2019
-
Python
from functools import reduce from operator import mul n, A328095_list = 0, [] while len(A328095_list) < 10000: sn = str(n) if sn in str(n*reduce(mul,(int(d) for d in sn))): A328095_list.append(n) n += 1 # Chai Wah Wu, Oct 19 2019
Comments