cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A320632 Numbers k such that there exists a pair of factorizations of k into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

36, 60, 72, 84, 90, 100, 108, 120, 126, 132, 140, 144, 150, 156, 168, 180, 196, 198, 200, 204, 210, 216, 220, 225, 228, 234, 240, 252, 260, 264, 270, 276, 280, 288, 294, 300, 306, 308, 312, 315, 324, 330, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 390
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Positions of nonzero terms in A322437 or A322438.
Mats Granvik has conjectured that these are all the positive integers k such that sigma_0(k) - 2 > (bigomega(k) - 1) * omega(k), where sigma_0 = A000005, omega = A001221, and bigomega = A001222. - Gus Wiseman, Nov 12 2019
Numbers with more semiprime divisors than prime divisors. - Wesley Ivan Hurt, Jun 10 2021

Examples

			An example of such a pair for 36 is (4*9)|(6*6).
		

Crossrefs

The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[Subsets[facs[#],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    has_at_least_one_ndfpair(z) = { for(i=1,#z,for(j=i+1,#z,if(is_ndf_pair(z[i],z[j]),return(1)))); (0); };
    isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

A328956 Numbers k such that sigma_0(k) = omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 33, 34, 35, 38, 39, 40, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 104, 106, 111, 112, 115, 116, 117
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Comments

First differs from A084227 in having 60.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  39: {2,6}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
		

Crossrefs

Zeros of A328958.
The complement is A328957.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - omega(n) * Omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) == omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) = A001222(a(n)) * A001221(a(n)).

A328958 a(n) = d(n) - (omega(n) * bigomega(n)), where d (number of divisors) = A000005, omega = A001221, bigomega = A001222.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, -1, 1, 0, 0, -1, 1, 2, 1, 0, 0, 0, 0, -1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, -1, 1, 0, -1
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

a(n) = sigma_0(n) - omega(n) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222. - The original name of the sequence.

Examples

			a(144) = sigma_0(144) - omega(144) * nu(144) = 15 - 6 * 2 = 3.
		

Crossrefs

Positions of first appearances are A328962.
Zeros are A328956.
Nonzeros are A328957.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-PrimeOmega[n]*PrimeNu[n],{n,100}]
  • PARI
    A328958(n) = (numdiv(n)-(omega(n)*bigomega(n))); \\ Antti Karttunen, Jan 27 2025

Formula

a(n) = A000005(n) - A001222(n) * A001221(n) = A000005(n) - A113901(n).

Extensions

More terms added and the function names in the definition replaced with standard OEIS ones - Antti Karttunen, Jan 27 2025

A328959 a(n) = sigma_0(n) - 2 - (omega(n) - 1) * nu(n), where sigma_0 = A000005, nu = A001221, omega = A001222.

Original entry on oeis.org

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 02 2019. The idea for this sequence came from Mats Granvik

Keywords

Comments

Conjecture: All terms are nonnegative except for a(1) = -1.

Examples

			a(72) = sigma_0(72) - 2 - (omega(72) - 1) * nu(72) = 12 - 2 - (5 - 1) * 2 = 2.
		

Crossrefs

The positions of positive terms are conjectured to be A320632.
Positions of first appearances are A328963.
omega(n) * nu(n) is A113901(n).
(omega(n) - 1) * nu(n) is A307409.
sigma_0(n) - omega(n) * nu(n) is A328958(n).

Programs

  • Mathematica
    Table[DivisorSigma[0,n]-2-(PrimeOmega[n]-1)*PrimeNu[n],{n,100}]
  • PARI
    A307408(n) = 2+((bigomega(n)-1)*omega(n));
    A328959(n) = (numdiv(n) - A307408(n)); \\ Antti Karttunen, Nov 17 2019

Formula

a(n) = A000005(n) - A307408(n). - Antti Karttunen, Nov 17 2019

A328957 Numbers k such that sigma_0(k) != omega(k) * Omega(k), where sigma_0 = A000005, omega = A001221, Omega = A001222.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 41, 42, 43, 47, 49, 53, 59, 61, 64, 66, 67, 70, 71, 72, 73, 78, 79, 81, 83, 89, 97, 100, 101, 102, 103, 105, 107, 108, 109, 110, 113, 114, 120, 121, 125, 127, 128, 130, 131, 137
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2019

Keywords

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   30: {1,2,3}
   31: {11}
   32: {1,1,1,1,1}
		

Crossrefs

Nonzeros of A328958.
The complement is A328956.
Prime signature is A124010.
Omega-sequence is A323023.
omega(n) * Omega(n) is A113901(n).
(Omega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - Omega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (Omega(n) - 1) * omega(n) is A328959(n).

Programs

  • Mathematica
    Select[Range[100],DivisorSigma[0,#]!=PrimeOmega[#]*PrimeNu[#]&]
  • PARI
    is(k) = {my(f = factor(k)); numdiv(f) != omega(f) * bigomega(f);} \\ Amiram Eldar, Jul 28 2024

Formula

A000005(a(n)) != A001222(a(n)) * A001221(a(n)).

A328960 Number of integer partitions of n whose number of nontrivial submultisets is greater than their number of distinct parts times their number of parts minus 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 10, 18, 28, 45, 63, 93, 129, 178, 238, 321, 419, 551, 708, 911, 1158, 1472, 1845, 2316, 2883, 3583, 4421, 5453, 6680, 8180, 9964, 12122, 14687, 17771, 21418, 25788, 30949, 37092, 44324, 52906, 62980, 74885, 88832, 105243, 124429
Offset: 0

Views

Author

Gus Wiseman, Nov 02 2019

Keywords

Comments

These partitions are conjectured to be precisely those that have a pair of multiset partitions such that no part of one is a submultiset of any part of the other (see A320632). For example, such a pair of partitions of {1,1,2,2} is ({{1,1},{2,2}}, {{1,2},{1,2}}).

Examples

			The a(6) = 1 through a(10) = 18 partitions:
  (2211)  (3211)   (3221)    (3321)     (3322)
          (22111)  (3311)    (4221)     (4321)
                   (4211)    (4311)     (4411)
                   (22211)   (5211)     (5221)
                   (32111)   (32211)    (5311)
                   (221111)  (33111)    (6211)
                             (42111)    (32221)
                             (222111)   (33211)
                             (321111)   (42211)
                             (2211111)  (43111)
                                        (52111)
                                        (222211)
                                        (322111)
                                        (331111)
                                        (421111)
                                        (2221111)
                                        (3211111)
                                        (22111111)
For example, the partition (4,2,2,1,1) has 16 nontrivial submultisets: {(1), (2), (4), (11), (21), ..., (2211), (4211), (4221)}, and 5 parts, 3 of which are distinct. Since 16 > (5 - 1) * 3 = 12, the partition (42211) is counted under a(10)
		

Crossrefs

The Heinz numbers of these partitions are conjectured to be A320632.
A307409(n) is (omega(n) - 1) * nu(n).
A328958(n) is sigma_0(n) - omega(n) * nu(n).
A328959(n) is sigma_0(n) - 2 - (omega(n) - 1) * nu(n).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],0
    				
Showing 1-6 of 6 results.