A329179 Numbers k such that A258881(k) is a square.
0, 23, 36, 52, 71, 80, 104, 137, 143, 154, 377, 443, 479, 533, 823, 963, 977, 1013, 1125, 1204, 1284, 1334, 1493, 1624, 1769, 1786, 1997, 2047, 2110, 2228, 2260, 2427, 2508, 2577, 2707, 2740, 3121, 3174, 3223, 3407, 3440, 3477, 3526, 3644, 3745, 3828, 3860, 4027, 4079, 4163, 4314, 4384, 4518
Offset: 1
Examples
a(3) = 36 is a member of the sequence because 36 + 3^2 + 6^2 = 81 = 9^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= n -> issqr(n + convert(map(`^`,convert(n,base,10),2),`+`)): select(filter, [$0..10^4]);
-
Mathematica
Select[Range[0,5000],IntegerQ[Sqrt[#+Total[IntegerDigits[#]^2]]]&] (* Harvey P. Dale, Jan 01 2022 *)
-
PARI
isok(k) = issquare(k+norml2(digits(k))); \\ Michel Marcus, Jan 31 2021
-
Python
from sympy.ntheory.primetest import is_square def ssd(n): return sum(int(d)**2 for d in str(n)) def ok(n): return is_square(n + ssd(n)) def aupto(limit): return [m for m in range(limit+1) if ok(m)] print(aupto(4000)) # Michael S. Branicky, Jan 30 2021