cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A258881 a(n) = n + the sum of the squared digits of n.

Original entry on oeis.org

0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 11, 13, 17, 23, 31, 41, 53, 67, 83, 101, 24, 26, 30, 36, 44, 54, 66, 80, 96, 114, 39, 41, 45, 51, 59, 69, 81, 95, 111, 129, 56, 58, 62, 68, 76, 86, 98, 112, 128, 146, 75, 77, 81, 87, 95, 105, 117, 131, 147, 165, 96, 98, 102
Offset: 0

Views

Author

M. F. Hasler, Jul 19 2015

Keywords

Crossrefs

Cf. A003132, A062028, A259391, A259567, A033936, A076161 (indices of primes), A329179 (indices of squares).

Programs

  • Mathematica
    Total[Flatten@ {#, IntegerDigits[#]^2}] & /@ Range[0, 61] (* Michael De Vlieger, Jul 20 2015 *)
    Table[n+Total[IntegerDigits[n]^2],{n,0,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    A258881(n)=n+norml2(digits(n))
    
  • Python
    def ssd(n): return sum(int(d)**2 for d in str(n))
    def a(n): return n + ssd(n)
    print([a(n) for n in range(63)]) # Michael S. Branicky, Jan 30 2021

A329386 Numbers k such that k + A055012(k) is a square.

Original entry on oeis.org

17, 104, 216, 260, 342, 392, 500, 518, 540, 590, 746, 830, 848, 1008, 1073, 1077, 1166, 1169, 1233, 1313, 1694, 1784, 1835, 1962, 1998, 2252, 2420, 2897, 3006, 3047, 3087, 3302, 3762, 4316, 4416, 4424, 4706, 4928, 5031, 5126, 5273, 5435, 6137, 6399, 6813, 7134, 7259, 7442, 7449, 7655, 7895, 7992
Offset: 1

Views

Author

Will Gosnell and Robert Israel, Nov 12 2019

Keywords

Examples

			a(3)=216 is a term because 216 + 2^3 + 1^3 + 6^3 = 441 = 21^2.
		

Crossrefs

Programs

  • Magma
    [k:k in [1..8000]|IsSquare(k+&+[c^3: c in Intseq(k)])]; // Marius A. Burtea, Nov 12 2019
    
  • Maple
    filter:= proc(n) local t;
      issqr( n + add(t^3,t=convert(n,base,10)));
    end proc:
    select(filter, [$1..10000]);
  • PARI
    A055012(n)=sum(i=1, #n=digits(n), n[i]^3)
    is(n)=issquare(n + A055012(n)) \\ Charles R Greathouse IV, Jun 10 2020

A338235 Numbers k such that k + the sum of the 4th powers of the decimal digits of k is a square.

Original entry on oeis.org

20, 47, 104, 113, 228, 255, 333, 544, 632, 743, 1054, 1122, 1518, 1762, 1901, 2071, 3617, 4317, 4432, 4456, 4513, 4557, 4727, 4927, 5000, 5058, 5080, 5173, 5473, 5847, 6047, 6767, 6832, 7247, 7408, 7453, 7487, 7518, 7921, 7997, 8127, 8958, 9208, 9487, 10917
Offset: 1

Views

Author

Will Gosnell, Jan 30 2021

Keywords

Examples

			20 is a member since 2^4 + 0^4 + 20 = 6^2,
47 is a member since 4^4 + 7^4 + 47 = 52^2,
104 is a member since 1^4 + 0^4 + 4^4 = 104 = 19^2,
113 is a member since 1^4 + 1^4 + 3^4 + 113 = 14^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,k;
      issqr(n + add(t^4, t=convert(n,base,10)))
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Jan 30 2021
Showing 1-3 of 3 results.