cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A329179 Numbers k such that A258881(k) is a square.

Original entry on oeis.org

0, 23, 36, 52, 71, 80, 104, 137, 143, 154, 377, 443, 479, 533, 823, 963, 977, 1013, 1125, 1204, 1284, 1334, 1493, 1624, 1769, 1786, 1997, 2047, 2110, 2228, 2260, 2427, 2508, 2577, 2707, 2740, 3121, 3174, 3223, 3407, 3440, 3477, 3526, 3644, 3745, 3828, 3860, 4027, 4079, 4163, 4314, 4384, 4518
Offset: 1

Views

Author

Will Gosnell and Robert Israel, Nov 07 2019

Keywords

Examples

			a(3) = 36 is a member of the sequence because 36 + 3^2 + 6^2 = 81 = 9^2.
		

Crossrefs

Programs

  • Maple
    filter:= n -> issqr(n + convert(map(`^`,convert(n,base,10),2),`+`)):
    select(filter, [$0..10^4]);
  • Mathematica
    Select[Range[0,5000],IntegerQ[Sqrt[#+Total[IntegerDigits[#]^2]]]&] (* Harvey P. Dale, Jan 01 2022 *)
  • PARI
    isok(k) = issquare(k+norml2(digits(k))); \\ Michel Marcus, Jan 31 2021
  • Python
    from sympy.ntheory.primetest import is_square
    def ssd(n): return sum(int(d)**2 for d in str(n))
    def ok(n): return is_square(n + ssd(n))
    def aupto(limit): return [m for m in range(limit+1) if ok(m)]
    print(aupto(4000)) # Michael S. Branicky, Jan 30 2021
    

A338235 Numbers k such that k + the sum of the 4th powers of the decimal digits of k is a square.

Original entry on oeis.org

20, 47, 104, 113, 228, 255, 333, 544, 632, 743, 1054, 1122, 1518, 1762, 1901, 2071, 3617, 4317, 4432, 4456, 4513, 4557, 4727, 4927, 5000, 5058, 5080, 5173, 5473, 5847, 6047, 6767, 6832, 7247, 7408, 7453, 7487, 7518, 7921, 7997, 8127, 8958, 9208, 9487, 10917
Offset: 1

Views

Author

Will Gosnell, Jan 30 2021

Keywords

Examples

			20 is a member since 2^4 + 0^4 + 20 = 6^2,
47 is a member since 4^4 + 7^4 + 47 = 52^2,
104 is a member since 1^4 + 0^4 + 4^4 = 104 = 19^2,
113 is a member since 1^4 + 1^4 + 3^4 + 113 = 14^2.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L,k;
      issqr(n + add(t^4, t=convert(n,base,10)))
    end proc:
    select(filter, [$1..20000]); # Robert Israel, Jan 30 2021
Showing 1-2 of 2 results.