cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331410 a(n) is the number of iterations needed to reach a power of 2 starting at n and using the map k -> k + k/p, where p is the largest prime factor of k.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 0, 2, 2, 2, 1, 2, 1, 3, 0, 3, 2, 3, 2, 2, 2, 2, 1, 4, 2, 3, 1, 4, 3, 1, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 2, 3, 2, 4, 2, 2, 1, 2, 4, 4, 2, 4, 3, 4, 1, 4, 4, 4, 3, 2, 1, 3, 0, 4, 3, 4, 3, 3, 3, 3, 2, 5, 4, 5, 3, 3, 3, 3, 2, 4, 3, 3, 2, 5, 3, 5, 2, 5, 4, 3, 2, 2, 2, 5, 1, 3, 2, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Ali Sada, Jan 16 2020

Keywords

Comments

Let f(n) = A000265(n) be the odd part of n. Let p be the largest prime factor of k, and say k = p * m. Suppose that k is not a power of 2, i.e., p > 2, then f(k) = p * f(m). The iteration is k -> k + k/p = p*m + m = (p+1) * m. So, p * f(m) -> f(p+1) * f(m). Since for p > 2, f(p+1) < p, the odd part in each iteration decreases, until it becomes 1, i.e., until we reach a power of 2. - Amiram Eldar, Feb 19 2020
Any odd prime factor of k can be used at any step of the iteration, and the result will be same. Thus, like A329697, this is also fully additive sequence. - Antti Karttunen, Apr 29 2020
If and only if a(n) is equal to A005087(n), then sigma(2n) - sigma(n) is a power of 2. (See A336923, A046528). - Antti Karttunen, Mar 16 2021

Examples

			The trajectory of 15 is [15,18,24,32], taking 3 iterations to reach 32. So, a(15) = 3.
		

Crossrefs

Cf. A000265, A005087, A006530 (greatest prime factor), A052126, A078701, A087436, A329662 (positions of records and the first occurrences of each n), A334097, A334098, A334108, A334861, A336467, A336921, A336922, A336923 (A046528).
Cf. array A335430, and its rows A335431, A335882, and also A335874.
Cf. also A329697 (analogous sequence when using the map k -> k - k/p), A335878.
Cf. also A330437, A335884, A335885, A336362, A336363 for other similar iterations.

Programs

  • Magma
    f:=func; g:=func; a:=[]; for n in [1..1000] do k:=n; s:=0; while not g(k) do  s:=s+1; k:=f(k); end while; Append(~a,s); end for; a; // Marius A. Burtea, Jan 19 2020
    
  • Mathematica
    a[n_] := -1 + Length @ NestWhileList[# + #/FactorInteger[#][[-1, 1]] &, n, # / 2^IntegerExponent[#, 2] != 1 &]; Array[a, 100] (* Amiram Eldar, Jan 16 2020 *)
  • PARI
    A331410(n) = if(!bitand(n,n-1),0,1+A331410(n+(n/vecmax(factor(n)[, 1])))); \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(k=0); while(bitand(n,n-1), k++; my(f=factor(n)[, 1]); n += (n/f[2-(n%2)])); (k); }; \\ Antti Karttunen, Apr 29 2020
    
  • PARI
    A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(1+f[k,1])))); }; \\ Antti Karttunen, Apr 30 2020

Formula

From Antti Karttunen, Apr 29 2020: (Start)
This is a completely additive sequence: a(2) = 0, a(p) = 1+a(p+1) for odd primes p, a(m*n) = a(m)+a(n), if m,n > 1.
a(2n) = a(A000265(n)) = a(n).
If A209229(n) == 1, a(n) = 0, otherwise a(n) = 1 + a(n+A052126(n)), or equally, 1 + a(n+(n/A078701(n))).
a(n) = A334097(n) - A334098(n).
a(A122111(n)) = A334108(n).
(End)
a(n) = A334861(n) - A329697(n). - Antti Karttunen, May 14 2020
a(n) = a(A336467(n)) + A087436(n) = A336921(n) + A087436(n). - Antti Karttunen, Mar 16 2021

Extensions

Data section extended up to a(105) by Antti Karttunen, Apr 29 2020

A335430 Square array where row n lists all numbers k for which A331410(k) = n, read by falling antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 7, 9, 15, 16, 12, 10, 17, 25, 32, 14, 11, 19, 29, 73, 64, 24, 13, 27, 37, 75, 125, 128, 28, 18, 30, 45, 85, 145, 365, 256, 31, 20, 33, 50, 87, 149, 375, 625, 512, 48, 21, 34, 51, 89, 173, 425, 725, 1249, 1024, 56, 22, 35, 53, 95, 185, 435, 745, 1489, 3125, 2048, 62, 23, 38, 55, 101, 219, 445, 841, 1825, 3625, 6245
Offset: 0

Views

Author

Antti Karttunen, Jun 28 2020

Keywords

Comments

Array is read by descending antidiagonals with (n,k) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ... where A(n,k) is the (k+1)-th solution x to A331410(x) = n. The row indexing (n) starts from 0, and column indexing (k) also from 0.
For any odd prime p that appears on row n, p+1 appears on row n-1.
The e-th powers of the terms on row n form a subset of terms on row (e*n). More generally, a product of terms that occur on rows i_1, i_2, ..., i_k can be found at row (i_1 + i_2 + ... + i_k), because A331410 is completely additive.

Examples

			The top left corner of the array:
  n\k |    0     1     2     3     4     5     6     7     8     9
------+----------------------------------------------------------------
   0  |    1,    2,    4,    8,   16,   32,   64,  128,  256,  512, ...
   1  |    3,    6,    7,   12,   14,   24,   28,   31,   48,   56, ...
   2  |    5,    9,   10,   11,   13,   18,   20,   21,   22,   23, ...
   3  |   15,   17,   19,   27,   30,   33,   34,   35,   38,   39, ...
   4  |   25,   29,   37,   45,   50,   51,   53,   55,   57,   58, ...
   5  |   73,   75,   85,   87,   89,   95,  101,  109,  111,  113, ...
   6  |  125,  145,  149,  173,  185,  219,  225,  250,  255,  261, ...
   7  |  365,  375,  425,  435,  445,  447,  449,  475,  493,  499, ...
   8  |  625,  725,  745,  841,  865,  925,  997, 1009, 1073, 1095, ...
   9  | 1249, 1489, 1825, 1875, 1993, 2017, 2117, 2125, 2175, 2225, ...
etc.
		

Crossrefs

Cf. A331410.
Cf. A329662 (the leftmost column), A000079, A335431, A335882 (rows 0, 1 and 2).
Cf. also A334100 (an analogous array for the map k -> k - k/p), and A335910.

Programs

  • PARI
    up_to = 78-1; \\ = binomial(12+1,2)-1
    memoA331410 = Map();
    A331410(n) = if(1==n,0,my(v=0); if(mapisdefined(memoA331410,n,&v), v, my(f=factor(n)); v = sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); mapput(memoA331410,n,v); (v)));
    memoA335430sq = Map();
    A335430sq(n, k) = { my(v=0); if((0==k), v = -1, if(!mapisdefined(memoA335430sq,[n,k-1],&v), v = A335430sq(n, k-1))); for(i=1+v,oo,if(A331410(1+i)==n,mapput(memoA335430sq,[n,k],i); return(1+i))); };
    A335430list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A335430sq(col,(a-(col))))); (v); };
    v335430 = A335430list(up_to);
    A335430(n) = v335430[1+n];
    for(n=0,up_to,print1(A335430(n),", "));

A335881 a(n) = max(A329697(n), A331410(n)).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 2, 1, 2, 2, 3, 0, 3, 2, 3, 2, 3, 2, 3, 1, 4, 2, 3, 2, 4, 3, 3, 0, 3, 3, 3, 2, 4, 3, 3, 2, 3, 3, 4, 2, 4, 3, 4, 1, 4, 4, 4, 2, 4, 3, 4, 2, 4, 4, 4, 3, 3, 3, 4, 0, 4, 3, 4, 3, 4, 3, 4, 2, 5, 4, 5, 3, 4, 3, 4, 2, 4, 3, 3, 3, 5, 4, 5, 2, 5, 4, 4, 3, 4, 4, 5, 1, 3, 4, 4, 4, 5, 4, 3, 2, 4
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Crossrefs

Cf. A329662 (apparently the positions of records).

Programs

Formula

a(n) = max(A329697(n), A331410(n)).
For all n >= 1, A335904(n) >= A335884(n) >= a(n) >= A335875(n) >= A335885(n).

A334099 The least k for which A329697(k) = n; Position of first occurrence of n (and also records) in A329697.

Original entry on oeis.org

1, 3, 7, 19, 43, 127, 283, 659, 1319, 3957, 9227, 21599, 50123, 129263, 258527, 775581, 1551163, 4340087, 9750239, 27353747, 65148847, 156067127, 340997113, 955523423
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Note that although most of the terms after 1 are primes, we also have a few composites: a(9) = a(1)*a(8) = 3*1319 = 3957, a(15) = a(1)*a(14) = 3*258527 = 775581, a(22) = a(8)*a(14) = 340997113.
a(n) <= 3^n and in particular, a(n+1) <= 3*a(n), n > 0 and more generally a(n + m) <= a(n) * a(m) where m, n >= 0. - David A. Corneth, Apr 15 2020
The above follows because A329697 is totally additive.

Crossrefs

The leftmost column of A334100.
Cf. A329697 (a left inverse).
Cf. A067513.
Cf. A007755, A105017, and also A329662 (analogous sequence when using the map k -> k + k/p).

Programs

  • Mathematica
    With[{s = Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 10^6]}, {1}~Join~Array[FirstPosition[s, #][[1]] &, Max@ s]] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    m=-1; k=0; for(n=1,2^32, t=A329697(n); if(t>m, m=t; write("b334099.txt", k, " ", n); k++));

Formula

For all n >= 0, A329697(a(n)) = n.
Showing 1-4 of 4 results.