A329708 Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2*x+...+(n+1)*x^n)^2.
1, 1, 4, 4, 1, 4, 10, 12, 9, 1, 4, 10, 20, 25, 24, 16, 1, 4, 10, 20, 35, 44, 46, 40, 25, 1, 4, 10, 20, 35, 56, 70, 76, 73, 60, 36, 1, 4, 10, 20, 35, 56, 84, 104, 115, 116, 106, 84, 49, 1, 4, 10, 20, 35, 56, 84, 120, 147, 164, 170, 164, 145, 112, 64
Offset: 0
Examples
Triangle begins: 1; 1, 4, 4; 1, 4, 10, 12, 9; 1, 4, 10, 20, 25, 24, 16; 1, 4, 10, 20, 35, 44, 46, 40, 25; ...
Links
- Seiichi Manyama, Rows n = 0..99, flattened
Crossrefs
Programs
-
Mathematica
row[n_]:=CoefficientList[Series[(Sum[(i+1)x^i,{i,0,n}])^2,{x,0,2n}],x]; Array[row,8,0]//Flatten (* Stefano Spezia, Feb 15 2025 *)
-
PARI
for(n=0, 10, print(Vecrev(sum(k=0, n, (k+1)*x^k)^2), ", "))
Formula
T(n,k) = A000292(k+1) for k=0..n.
Sum_{k=0..2n} (-1)^k * T(n,k) = A008794(n+2). - Alois P. Heinz, Feb 14 2025