A329963 Numbers k such that sigma(k) is not divisible by 3.
1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 25, 27, 28, 31, 36, 37, 39, 43, 48, 52, 57, 61, 63, 64, 67, 73, 75, 76, 79, 81, 84, 91, 93, 97, 100, 103, 108, 109, 111, 112, 117, 121, 124, 127, 129, 133, 139, 144, 148, 151, 156, 157, 163, 171, 172, 175, 181, 183, 189, 192, 193, 199, 201, 208, 211, 217, 219, 223, 225, 228, 229
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Tewodros Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Diego Villamizar, Arithmetic properties of the sum of divisors, arXiv:2007.03088 [math.NT], 2020. See p. 15 ff. [Note: the "if and only if" condition given in the beginning of Theorem 7.1 is for A003136, not for this sequence. - _Antti Karttunen_, Jul 04 2024]
- Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
Crossrefs
Programs
-
Magma
[k:k in [1..200]| DivisorSigma(1,k) mod 3 ne 0]; // Marius A. Burtea, Jan 02 2020
-
Maple
select(t -> numtheory:-sigma(t) mod 3 <> 0, [$1..200]); # Robert Israel, Jan 01 2020
-
Mathematica
Select[Range[200], !Divisible[DivisorSigma[1, #], 3] &] (* Amiram Eldar, Nov 25 2019 *)
-
PARI
isok(k) = (sigma(k) % 3) != 0; \\ Michel Marcus, Nov 26 2019
-
PARI
isA329963 = A353815; \\ Antti Karttunen, Jul 03 2024
Extensions
More terms from Joshua Oliver, Nov 26 2019
Data section further extended up to a(71), to better differentiate from nearby sequences - Antti Karttunen, Jul 04 2024
Comments