cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330299 a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 3 even numbers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 4, 16, 20, 50, 60, 120, 140, 245, 280, 448, 504, 756, 840, 1200, 1320, 1815, 1980, 2640, 2860, 3718, 4004, 5096, 5460, 6825, 7280, 8960, 9520, 11560, 12240, 14688, 15504, 18411, 19380, 22800, 23940, 27930, 29260, 33880, 35420, 40733, 42504, 48576, 50600, 57500
Offset: 0

Views

Author

Enrique Navarrete, Feb 29 2020

Keywords

Comments

The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).

Examples

			a(7)=4 and the 4 subsets are {1,2,4,6}, {2,3,4,6}, {2,4,5,6}, {2,4,6,7}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Ceiling[n/2] * Binomial[Floor[n/2], 3]; Array[a, 51, 0] (* Amiram Eldar, Mar 01 2020 *)
  • PARI
    a(n) = ceil(n/2) * binomial(floor(n/2), 3) \\ Andrew Howroyd, Mar 01 2020
    
  • PARI
    concat([0,0,0,0,0,0], Vec(x^6*(3 + x) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Mar 02 2020

Formula

a(n) = ceiling(n/2) * binomial(floor(n/2), 3).
From Colin Barker, Mar 01 2020: (Start)
G.f.: x^6*(3 + x) / ((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
E.g.f.: (x*(15 - 3*x - 2*x^2 + x^3)*cosh(x) + (-15 + 3*x - 3*x^2 + x^4)*sinh(x))/96. - Stefano Spezia, Mar 02 2020