A330298
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 2 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 2, 3, 9, 12, 24, 30, 50, 60, 90, 105, 147, 168, 224, 252, 324, 360, 450, 495, 605, 660, 792, 858, 1014, 1092, 1274, 1365, 1575, 1680, 1920, 2040, 2312, 2448, 2754, 2907, 3249, 3420, 3800, 3990, 4410, 4620, 5082, 5313, 5819, 6072, 6624, 6900, 7500, 7800, 8450, 8775, 9477
Offset: 0
For n=6, a(6) = 9 and the 9 subsets are: {1,2,4}, {1,2,6}, {1,4,6}, {2,3,4}, {2,3,6}, {2,4,5}, {2,5,6}, {3,4,6}, {4,5,6}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- J.S. Seneschal, Oblong Prism Illustration
- Index entries for linear recurrences with constant coefficients, signature (1,3,-3,-3,3,1,-1).
-
a[n_] := Ceiling[n/2] * Binomial[Floor[n/2], 2]; Array[a, 55, 0] (* Amiram Eldar, Mar 01 2020 *)
Table[Length[Select[Subsets[Range[n],{3}],Total[Boole[OddQ[#]]]==1&]],{n,0,60}] (* Harvey P. Dale, Jul 26 2020 *)
-
a(n) = ceil(n/2) * binomial(floor(n/2), 2) \\ Andrew Howroyd, Mar 01 2020
-
concat([0,0,0,0], Vec(x^4*(2 + x) / ((1 - x)^4*(1 + x)^3) + O(x^40))) \\ Colin Barker, Mar 02 2020
A330300
a(n) is the number of subsets of {1..n} that contain exactly 2 odd and 3 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 6, 24, 40, 100, 150, 300, 420, 735, 980, 1568, 2016, 3024, 3780, 5400, 6600, 9075, 10890, 14520, 17160, 22308, 26026, 33124, 38220, 47775, 54600, 67200, 76160, 92480, 104040, 124848, 139536, 165699, 184110, 216600, 239400, 279300, 307230, 355740, 389620, 448063
Offset: 0
a(7) = 6 and the 6 subsets are {1,2,3,4,6}, {1,2,4,5,6}, {1,2,4,6,7}, {2,3,4,5,6}, {2,3,4,6,7}, {2,4,5,6,7}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
a[n_] := Binomial[Ceiling[n/2], 2] * Binomial[Floor[n/2], 3]; Array[a, 47, 0] (* Amiram Eldar, Mar 01 2020 *)
-
a(n) = binomial(ceil(n/2), 2) * binomial(floor(n/2), 3) \\ Andrew Howroyd, Mar 01 2020
-
concat([0,0,0,0,0,0], Vec(x^6*(3 + 3*x + 3*x^2 + x^3) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Mar 02 2020
A333321
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 4 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 25, 30, 90, 105, 245, 280, 560, 630, 1134, 1260, 2100, 2310, 3630, 3960, 5940, 6435, 9295, 10010, 14014, 15015, 20475, 21840, 29120, 30940, 40460, 42840, 55080, 58140, 73644, 77520, 96900, 101745, 125685, 131670, 160930, 168245, 203665, 212520
Offset: 0
a(9)=5 and the 5 subsets are {1,2,4,6,8}, {2,3,4,6,8}, {2,4,5,6,8}, {2,4,6,7,8}, {2,4,6,8,9}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
Array[Binomial[Ceiling[#], 1] Binomial[Floor[#], 4] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
-
concat([0,0,0,0,0,0,0,0], Vec(x^8*(4 + x) / ((1 - x)^6*(1 + x)^5) + O(x^45))) \\ Colin Barker, Mar 17 2020
A333319
a(n) is the number of subsets of {1..n} that contain exactly 3 odd and 1 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 3, 12, 16, 40, 50, 100, 120, 210, 245, 392, 448, 672, 756, 1080, 1200, 1650, 1815, 2420, 2640, 3432, 3718, 4732, 5096, 6370, 6825, 8400, 8960, 10880, 11560, 13872, 14688, 17442, 18411, 21660, 22800, 26600, 27930, 32340, 33880, 38962, 40733, 46552
Offset: 0
a(7)=12 and the 12 subsets are {1,2,3,5}, {1,2,3,7}, {1,2,5,7}, {1,3,4,5}, {1,3,4,7}, {1,3,5,6}, {1,3,6,7}, {1,4,5,7}, {1,5,6,7}, {2,3,5,7}, {3,4,5,7}, {3,5,6,7}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
-
Array[Binomial[Ceiling[#], 3] Binomial[Floor[#], 1] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
-
concat([0,0,0,0,0], Vec(x^5*(2 + x + x^2) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Mar 15 2020
Showing 1-4 of 4 results.
Comments