A006002
a(n) = n*(n+1)^2/2.
Original entry on oeis.org
0, 2, 9, 24, 50, 90, 147, 224, 324, 450, 605, 792, 1014, 1274, 1575, 1920, 2312, 2754, 3249, 3800, 4410, 5082, 5819, 6624, 7500, 8450, 9477, 10584, 11774, 13050, 14415, 15872, 17424, 19074, 20825, 22680, 24642, 26714, 28899, 31200, 33620, 36162, 38829, 41624
Offset: 0
Let P^n=6^2. The product of the divisors of 36 = 10077796 = 6^9, i.e., for n=2, k=9. - _James A. Raymond_ & Douglas Raymond, Dec 04 2011
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Quang T. Bach, Roshil Paudyal and Jeffrey B. Remmel, A Fibonacci analogue of Stirling numbers, arXiv preprint arXiv:1510.04310 [math.CO], 2015.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- Dexter Jane L. Indong and Gilbert R. Peralta, Inversions of permutations in Symmetric, Alternating, and Dihedral Gropus, JIS, Vol. 11 (2008), Article 08.4.3.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
- Index entries for two-way infinite sequences.
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in
A267370.
-
List([0..10^3],n->n*(n+1)^2/2); # Muniru A Asiru, Feb 04 2018
-
a006002 n = n * (n + 1) ^ 2 `div` 2 -- Reinhard Zumkeller, Dec 12 2012
-
[n*(n+1)^2/2 : n in [0..50]]; // Wesley Ivan Hurt, Nov 17 2014
-
seq(binomial(n+1,2)*(n+1), n=0..36); # Zerinvary Lajos, Apr 25 2007
-
Table[(n^3-n^2)/2, {n, 41}] (* Zerinvary Lajos, Mar 21 2007 *)
LinearRecurrence[{4,-6,4,-1}, {0,2,9,24}, 40] (* Harvey P. Dale, Aug 14 2012 *)
Accumulate @ # (# + 1) & [Range[0,50]] (* Waldemar Puszkarz, Jan 24 2015 *)
-
a(n)=n*(n+1)^2/2
A027480
a(n) = n*(n+1)*(n+2)/2.
Original entry on oeis.org
0, 3, 12, 30, 60, 105, 168, 252, 360, 495, 660, 858, 1092, 1365, 1680, 2040, 2448, 2907, 3420, 3990, 4620, 5313, 6072, 6900, 7800, 8775, 9828, 10962, 12180, 13485, 14880, 16368, 17952, 19635, 21420, 23310, 25308, 27417, 29640, 31980, 34440
Offset: 0
Row sums of n consecutive integers, starting at 0, seen as a triangle:
.
0 | 0
3 | 1 2
12 | 3 4 5
30 | 6 7 8 9
60 | 10 11 12 13 14
105 | 15 16 17 18 19 20
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Douglas N. Arnold, Richard S. Falk, and Ragnar Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numerica 15 (2006), 1-155.
- Steve Butler and Pavel Karasik, A note on nested sums, J. Int. Seq. 13 (2010), 10.4.4.
- Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 9.
- Solomon Gartenhaus, Odd Order Pandiagonal Latin and Magic Cubes in Three and Four Dimensions, arXiv:math/0210275 [math.CO], 2002.
- Index entries for sequences related to dominoes
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Cf. similar sequences of the type n*(n+1)*(n+k)/2 listed in
A267370.
Similar sequences are listed in
A316224.
-
[n*(n+1)*(n+2)/2: n in [0..40]]; // Vincenzo Librandi, Nov 14 2014
-
[seq(3*binomial(n+2,3),n=0..37)]; # Zerinvary Lajos, Nov 24 2006
a := n -> add((j+n)*(n+2)/3,j=0..n): seq(a(n),n=0..35); # Zerinvary Lajos, Dec 17 2006
-
Table[(m^3 - m)/2, {m, 36}] (* Zerinvary Lajos, Mar 21 2007 *)
LinearRecurrence[{4,-6,4,-1},{0,3,12,30},40] (* Harvey P. Dale, Oct 10 2012 *)
CoefficientList[Series[3 x / (x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 14 2014 *)
With[{nn=50},Total/@TakeList[Range[0,(nn(nn+1))/2-1],Range[nn]]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Jun 02 2019 *)
-
a(n)=3*binomial(n+2,3) \\ Charles R Greathouse IV, May 23 2011
-
def a(n): return (n**3+3*n**2+2*n)//2 # _Torlach Rush, Jun 16 2024
A330299
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 3 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 16, 20, 50, 60, 120, 140, 245, 280, 448, 504, 756, 840, 1200, 1320, 1815, 1980, 2640, 2860, 3718, 4004, 5096, 5460, 6825, 7280, 8960, 9520, 11560, 12240, 14688, 15504, 18411, 19380, 22800, 23940, 27930, 29260, 33880, 35420, 40733, 42504, 48576, 50600, 57500
Offset: 0
a(7)=4 and the 4 subsets are {1,2,4,6}, {2,3,4,6}, {2,4,5,6}, {2,4,6,7}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,4,-4,-6,6,4,-4,-1,1).
-
a[n_] := Ceiling[n/2] * Binomial[Floor[n/2], 3]; Array[a, 51, 0] (* Amiram Eldar, Mar 01 2020 *)
-
a(n) = ceil(n/2) * binomial(floor(n/2), 3) \\ Andrew Howroyd, Mar 01 2020
-
concat([0,0,0,0,0,0], Vec(x^6*(3 + x) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Mar 02 2020
A330300
a(n) is the number of subsets of {1..n} that contain exactly 2 odd and 3 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 6, 24, 40, 100, 150, 300, 420, 735, 980, 1568, 2016, 3024, 3780, 5400, 6600, 9075, 10890, 14520, 17160, 22308, 26026, 33124, 38220, 47775, 54600, 67200, 76160, 92480, 104040, 124848, 139536, 165699, 184110, 216600, 239400, 279300, 307230, 355740, 389620, 448063
Offset: 0
a(7) = 6 and the 6 subsets are {1,2,3,4,6}, {1,2,4,5,6}, {1,2,4,6,7}, {2,3,4,5,6}, {2,3,4,6,7}, {2,4,5,6,7}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
a[n_] := Binomial[Ceiling[n/2], 2] * Binomial[Floor[n/2], 3]; Array[a, 47, 0] (* Amiram Eldar, Mar 01 2020 *)
-
a(n) = binomial(ceil(n/2), 2) * binomial(floor(n/2), 3) \\ Andrew Howroyd, Mar 01 2020
-
concat([0,0,0,0,0,0], Vec(x^6*(3 + 3*x + 3*x^2 + x^3) / ((1 - x)^6*(1 + x)^5) + O(x^40))) \\ Colin Barker, Mar 02 2020
A333321
a(n) is the number of subsets of {1..n} that contain exactly 1 odd and 4 even numbers.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 25, 30, 90, 105, 245, 280, 560, 630, 1134, 1260, 2100, 2310, 3630, 3960, 5940, 6435, 9295, 10010, 14014, 15015, 20475, 21840, 29120, 30940, 40460, 42840, 55080, 58140, 73644, 77520, 96900, 101745, 125685, 131670, 160930, 168245, 203665, 212520
Offset: 0
a(9)=5 and the 5 subsets are {1,2,4,6,8}, {2,3,4,6,8}, {2,4,5,6,8}, {2,4,6,7,8}, {2,4,6,8,9}.
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,5,-5,-10,10,10,-10,-5,5,1,-1).
-
Array[Binomial[Ceiling[#], 1] Binomial[Floor[#], 4] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
-
concat([0,0,0,0,0,0,0,0], Vec(x^8*(4 + x) / ((1 - x)^6*(1 + x)^5) + O(x^45))) \\ Colin Barker, Mar 17 2020
Showing 1-5 of 5 results.
Comments