A330460 Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.
1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 1, 0, 0, 0, 3, 2, 0, 0, 0, 0, 4, 5, 1, 0, 0, 0, 0, 5, 6, 1, 0, 0, 0, 0, 0, 6, 9, 2, 0, 0, 0, 0, 0, 0, 8, 13, 3, 0, 0, 0, 0, 0, 0, 0, 10, 23, 10, 1, 0, 0, 0, 0, 0, 0, 0, 12, 27, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 15, 40, 19, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 0 0 2 1 0 0 2 1 0 0 0 3 2 0 0 0 0 4 5 1 0 0 0 0 5 6 1 0 0 0 0 0 6 9 2 0 0 0 0 0 0 8 13 3 0 0 0 0 0 0 0 10 23 10 1 0 0 0 0 0 0 0 12 27 11 1 0 0 0 0 0 0 0 0 15 40 19 2 0 0 0 0 0 0 0 0 Row n = 8 counts the following set partitions: {{8}} {{1},{7}} {{1},{2},{5}} {{3,5}} {{2},{6}} {{1},{3},{4}} {{2,6}} {{3},{5}} {{1,7}} {{1},{3,4}} {{1,3,4}} {{1},{2,5}} {{1,2,5}} {{2},{1,5}} {{3},{1,4}} {{4},{1,3}} {{5},{1,2}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows n=0..50)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; `if`(i*(i+1)/2
k* b(n-i, t, k)+b(n-i, t, k+1))(min(n-i, i-1)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)): seq(T(n), n=0..15); # Alois P. Heinz, Dec 29 2019 -
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,2],Length[#]==k&&And[UnsameQ@@#,UnsameQ@@Join@@#]&]],{n,0,10},{k,0,n}] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, x^k, b[n, i-1, k] + Function[t, k*b[n-i, t, k] + b[n-i, t, k + 1]][Min[n-i, i-1]]]]; T[n_] := PadRight[CoefficientList[b[n, n, 0], x], n + 1]; T /@ Range[0, 15] // Flatten (* Jean-François Alcover, May 16 2021, after Alois P. Heinz *)
-
PARI
A(n)={my(v=Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n)))); vector(#v, n, my(p=v[n]); vector(n, k, sum(i=k, n, polcoef(p,i-1)*stirling(i-1, k-1, 2))))} {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ Andrew Howroyd, Dec 29 2019