cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330718 a(n) = numerator(Sum_{k=1..n} (2^k-2)/k).

Original entry on oeis.org

0, 1, 3, 13, 25, 137, 245, 871, 517, 4629, 8349, 45517, 83317, 1074679, 1992127, 7424789, 13901189, 78403447, 147940327, 280060651, 531718651, 11133725681, 21243819521, 40621501691, 15565330735, 388375065019, 248882304985, 479199924517, 923951191477, 2973006070891
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Dec 28 2019

Keywords

Comments

If p > 3 is prime, then p^2 | a(p).
Note the similarity to Wolstenholme's theorem.
Conjecture: for n > 3, if n^2 | a(n), then n is prime.
Are there the weak pseudoprimes m such that m | a(m)?
Primes p such that p^3 | a(p) are probably A088164.
If p is an odd prime, then a(p+1) == A330719(p+1) (mod p).
If p > 3 is a prime, then p^2 | numerator(Sum_{k=1..p+1} F(k)), where F(n) = Sum_{k=1..n} (2^(k-1)-1)/k. Cf. A027612 (a weaker divisibility).

Examples

			Numerators of 0, 1, 3, 13/2, 25/2, 137/6, 245/6, ...
		

Crossrefs

Programs

  • Magma
    [Numerator( &+[(2^k -2)/k: k in [1..n]] ): n in [1..30]]; // G. C. Greubel, Dec 28 2019
    
  • Maple
    seq(numer(add((2^k -2)/k, k = 1..n)), n = 1..30); # G. C. Greubel, Dec 28 2019
  • Mathematica
    Numerator @ Accumulate @ Array[(2^# - 2)/# &, 30]
    Table[Numerator[Simplify[-(2^(n+1)*LerchPhi[2,1,n+1] +Pi*I +2*HarmonicNumber[n])]], {n,30}] (* G. C. Greubel, Dec 28 2019 *)
  • PARI
    a(n) = numerator(sum(k=1, n, (2^k-2)/k)); \\ Michel Marcus, Dec 28 2019
    
  • Sage
    [numerator( sum((2^k -2)/k for k in (1..n)) ) for n in (1..30)] # G. C. Greubel, Dec 28 2019

Formula

a(n) = numerator(Sum_{k=1..n} (2^(k-1)-1)/k).
a(n+1) = numerator(a(n)/A330719(n) + A225101(n+1)/(2*A159353(n+1))).
a(p) = a(p-1) + A007663(n)*A330719(p-1) for p = prime(n) > 2.
a(n) = numerator(-(2^(n+1)*LerchPhi(2,1,n+1) + Pi*i + 2*HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
a(n) = numerator(A279683(n)/n!) for n > 0. - Amiram Eldar and Thomas Ordowski, Jan 15 2020
For n > 1, a(n) = A000265(A290347(n)). - Thomas Ordowski, Mar 29 2025