A330719 a(n) = denominator(Sum_{k=1..n} (2^(k-1) - 1)/k).
1, 2, 2, 4, 4, 12, 12, 24, 8, 40, 40, 120, 120, 840, 840, 1680, 1680, 5040, 5040, 5040, 5040, 55440, 55440, 55440, 11088, 144144, 48048, 48048, 48048, 80080, 80080, 160160, 160160, 2722720, 544544, 4900896, 4900896, 93117024, 93117024, 465585120, 465585120, 465585120
Offset: 1
Examples
Denominators of 0, 1/2, 3/2, 13/4, 25/4, 137/12, 245/12, ...
Links
- Metin Sariyar, Table of n, a(n) for n = 1..500
Programs
-
Magma
[Denominator( &+[(2^(k-1)-1)/k: k in [1..n]] ): n in [1..45]]; // G. C. Greubel, Dec 28 2019
-
Maple
seq(denom(add((2^(k-1)-1)/k, k = 1..n)), n = 1..45); # G. C. Greubel, Dec 28 2019
-
Mathematica
Denominator@Accumulate@Array[(2^(#-1) -1)/# &, 45] Table[Denominator[-(2^n*LerchPhi[2, 1, n+1] +Pi*I/2 +HarmonicNumber[n])], {n, 45}] (* G. C. Greubel, Dec 28 2019 *)
-
PARI
a(n) = denominator(sum(k=1, n, (2^(k-1)-1)/k)); \\ Michel Marcus, Dec 28 2019
-
Sage
[denominator( sum((2^(k-1)-1)/k for k in (1..n)) ) for n in (1..45)] # G. C. Greubel, Dec 28 2019
Formula
a(n) = denominator(-(2^n*LerchPhi(2,1,n+1) + Pi*i/2 + HarmonicNumber(n))). - G. C. Greubel, Dec 28 2019
Comments