cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330805 Number of squares and rectangles in the interior of the square with vertices (n,0), (0,n), (-n,0) and (0,-n) in a square (x,y)-grid.

Original entry on oeis.org

0, 9, 51, 166, 410, 855, 1589, 2716, 4356, 6645, 9735, 13794, 19006, 25571, 33705, 43640, 55624, 69921, 86811, 106590, 129570, 156079, 186461, 221076, 260300, 304525, 354159, 409626, 471366, 539835, 615505, 698864, 790416, 890681, 1000195, 1119510, 1249194, 1389831
Offset: 0

Views

Author

Luce ETIENNE, Jan 01 2020

Keywords

Comments

Collection: 2*n*(n+1)-ominoes.
Number of squares (all sizes): (8*n^3 + 24*n^2 + 22*n - 3*(-1)^n + 3)/12.
Number of rectangles (all sizes): (8*n^4 + 24*n^3 + 22*n^2 + 3*(-1)^n - 3)/12.

Examples

			a(1) = 4*1+5 = 9; a(2) = 4*5+31 = 51; a(3) = 4*15 + 106 = 166; a(4) = 4*36 + 270 = 410.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,9,51,166,410},40] (* Harvey P. Dale, Jun 27 2020 *)

Formula

G.f.: x*(x + 3)^2/(1 - x)^5.
E.g.f.: (1/6)*exp(x)*x*(54 + 99*x + 40*x^2 + 4*x^3). - Stefano Spezia, Jan 01 2020
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = n*(n + 1)*(4*n^2 + 12*n + 11)/6.
a(n) = 4*A000332(n+3) + A212523(n+1).
a(n) = 9*A000332(n+3) + 6*A000332(n+2) + A000332(n+1). - Mircea Dan Rus, Aug 26 2020
a(n) = 3*A004320(n) + A004320(n-1). - Mircea Dan Rus, Aug 26 2020