cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A330819 Numbers of the form M_p^2(M^p+2)^2, where M_p is a Mersenne prime (A000668) and p is a Mersenne exponent (A000043). Also the first element of the spectral basis of A330817.

Original entry on oeis.org

225, 3969, 1046529, 268402689, 4503599493152769, 295147905144993087489, 75557863725364567605249, 21267647932558653957237540927630737409, 28269553036454149273332760011886696242605918383730576346715242738439159809
Offset: 1

Views

Author

Walter Kehowski, Jan 01 2020

Keywords

Comments

The second element of the spectral basis of A330817 is A330820.

Examples

			If p=2, then M_2=3, and a(1) = 3^2(3+2)^2 = 15^2 = 225.
		

Crossrefs

Programs

  • Maple
    A330819:=[]:
    for www to 1 do
    for i from 1 to 31 do
      #ithprime(31)=127
      p:=ithprime(i);
      q:=2^p-1;
      if isprime(q) then x:=2^(2*p+1)*q^2; A330819:=[op(A330819),x]; fi;
    od;
    od;
    A330819;
  • Mathematica
    (m = 2^MersennePrimeExponent[Range[9]] - 1)^2 * (m + 2)^2 (* Amiram Eldar, Jan 03 2020 *)

Formula

a(n) = A000668(n)^2*(A000668(n)+2)^2.

A330820 Numbers of the form (M_p^2-1)^2, where M_p is a Mersenne prime, A000668. Also the second element of the power-spectral basis of A330817.

Original entry on oeis.org

64, 2304, 921600, 260112384, 4501400872550400, 295138898048817561600, 75557287266261531623424
Offset: 1

Views

Author

Walter Kehowski, Jan 06 2020

Keywords

Comments

The first element of the power-spectral basis of A330817 is A330819.

Examples

			If n=1, a(1)=(3^2-1)^2=64.
		

Crossrefs

Programs

  • Maple
    A330820:=[]:
    for www to 1 do
    for i from 1 to 31 do
    #ithprime(31)=127
      p:=ithprime(i);
      q:=2^p-1;
    if isprime(q) then x:=(q^2-1)^2; A330820:=[op(A330820),x] fi;
    od;
    od;
    A330820;
  • Mathematica
    Array[((2^MersennePrimeExponent[#] - 1)^2 - 1)^2 &, 10] (* Amiram Eldar, Jan 07 2020 *)

Formula

a(n) = (A000668(n)^2-1)^2.

A330817 Numbers of the form 2^(2*p+1)*M_p^2, where M_p is a Mersenne prime, A000668, with Mersenne exponent p, A000043.

Original entry on oeis.org

288, 6272, 1968128, 528515072, 9005000365703168, 590286803193810649088, 151115150991626099228672, 42535295825503226685013029169053827072, 56539106072908298497625662716064949049646203797489239767322203013731319808
Offset: 1

Views

Author

Walter Kehowski, Jan 01 2020

Keywords

Comments

Also numbers with power-spectral basis {M_p^2*(M_p+2)^2,(M_p^2-1)^2}.
The first factor of a(n) is A330818. The first element of the spectral basis of a(n) is A330819, and the second element is A330820.

Examples

			Since p=2 and M_2=3, then a(1)=2^(2*2+1)*3^3=288, and 288 has spectral basis {15^2, 2^6}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    A330817:=[]:
    for www to 1 do
    for i from 1 to 31 do
      #ithprime(31)=127
      p:=ithprime(i);
      q:=2^p-1;
      if isprime(q) then x:=2^(2*p+1)*q^2; A330817:=[op(A330817),x]; fi;
    od;
    od;
    A330817;
  • Mathematica
    2^(2 * (p = MersennePrimeExponent[Range[9]]) + 1) * (2^p - 1)^2 (* Amiram Eldar, Jan 03 2020 *)

A330840 a(n) = 4*M(n)^2*(M(n)+1)^2, where M(n) is the n-th Mersenne prime, A000668.

Original entry on oeis.org

576, 12544, 3936256, 1057030144, 18010000731406336, 1180573606387621298176, 302230301983252198457344, 85070591651006453370026058338107654144, 113078212145816596995251325432129898099292407594978479534644406027462639616
Offset: 1

Views

Author

Walter Kehowski, Jan 23 2020

Keywords

Comments

Also a(n+1) is the second element of the power-spectral basis of A330839(n), where by power-spectral we mean that the spectral basis consists of primes and powers.

Examples

			a(2) = 4*7^2*2^(2*3) = 2^8*7^2 = 112^2, and the spectral basis of A330839(1) = 18816 is {63^2, 112^2, 48^2}, consisting only of powers.
		

Crossrefs

Programs

  • Maple
    A330840 := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n);
      m:=2^p-1;
      return 4*m^2*(m+1)^2;
    end:
  • Mathematica
    f[p_] := 2^(2*p + 2)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[9] (* Amiram Eldar, Jan 24 2020 *)

Formula

a(n) = 4 * A133049(n) * A330824(n).

A330839 Numbers of the form 2^(2*p+1)*3*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

18816, 5904384, 1585545216, 27015001097109504, 1770860409581431947264, 453345452974878297686016, 127605887476509680055039087507161481216, 169617318218724895492876988148194847148938611392467719301966609041193959424
Offset: 1

Views

Author

Walter Kehowski, Jan 21 2020

Keywords

Comments

Also numbers with power-spectral basis {M_p^2*(M_p+2)^2, 4*M_p^2*(M_p+1)^2, (M_p^2-1)^2}, where by power-spectral basis we mean a spectral basis that consists of primes and powers. The first element of the power-spectral basis is A330819(n+1), the second element is A330840(n+1), and the third element is A330820(n+1).
Subsequence of Zumkeller numbers (A083207), since a(n) = 2^r * 3 * s, where s is relatively prime to 6. - Ivan N. Ianakiev, Feb 03 2020

Examples

			a(1) = 2^(2*3+1) * 3 * 7^2 = 18816, and 18816 has spectral basis {63^2, 112^2, 48^2}, consisting of powers.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
      local p, m;
      p:=NumberTheory[IthMersenne](n+1);
      m:=2^p-1;
      return 2^(2*p+1)*3*m^2;
    end:
  • Mathematica
    f[p_] := 2^(2p + 1)*3*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Jan 22 2020 *)

Formula

a(n) = A330818(n+1) * 3 * A133049(n+1).

A330841 Numbers of the form 2^(2*p-3)*9*M_p^2, where p > 2 is a Mersenne exponent, A000043, and M_p is the corresponding Mersenne prime, A000668.

Original entry on oeis.org

3528, 1107072, 297289728, 5065312705708032, 332036326796518490112, 85002272432789680816128, 23926103901845565010319828907592777728, 31803247166010917904914435277786533840425989636087697369118739195223867392
Offset: 1

Views

Author

Walter Kehowski, Jan 25 2020

Keywords

Comments

a(1) = 3528 has power-spectral basis {21^2, 28^2, 48^2}, of index 1. If n > 1, then a(n) has power-spectral basis {M^2*(M+2)^2, (1/4)*M^2*(M+1)^2, (M^2-1)^2}, with index 2, where M=A000668(n+1) is the (n+1)-st Mersenne prime. The first element of the spectral basis of a(n), n > 1, is A330819(n+1), the second element is A133051(n+1), and the third element is A330820(n+1). Generally, a power-spectral basis is a spectral basis that consists of primes and powers.
The spectral sum of a(n), that is, the sum of the elements of its spectral basis, is a(1) + 1 whenever n = 1, and 2*a(n)+1 whenever n > 1. In this case, we say that a(n) has index 1 and index 2, respectively.
a(n), n > 1, is also isospectral with 9*A133051(n), that is, a(n) and 9*A133051(n) have the same spectral basis, but 9*A133051(n) has index 1. Thus 9*A133051(n) and a(n) form an isospectral pair.

Examples

			a(2) = 2^(2*5-3)*9*31^2 = 2^7*9*31^2 = 1107072 has spectral basis {1023^2, 496^2, 960^2}, consisting of powers. The spectral sum of a(2), that is, the sum of the elements of its spectral basis, is 2*a(2)+1 = 2214145. In this case we say that a(2) has index 2. The number 9 * A330817(2) = 2^(2*5-2)*9*31^2 = 2^8*9*31^2 = 2214144 has the same spectral basis as a(2), but with index 1. We say that 9 * A330817(2) and a(2) are isospectral and form an isospectral pair.
		

Crossrefs

Programs

  • Maple
    a := proc(n::posint)
    local p, m;
    p:=NumberTheory[IthMersenne](n+1);
    m:=2^p-1;
    return 2^(2*p-3)*9*m^2;
    end;
  • Mathematica
    f[p_] := 9*2^(2*p - 3)*(2^p - 1)^2; f /@ MersennePrimeExponent /@ Range[2, 9] (* Amiram Eldar, Feb 07 2020 *)

Formula

a(n) = A152922(n+1) * 9 * A133049(n+1).
Showing 1-6 of 6 results.