A331028 Partition the terms of the harmonic series into groups sequentially so that the sum of each group is equal to or minimally greater than 1; then a(n) is the number of terms in the n-th group.
1, 3, 8, 22, 60, 163, 443, 1204, 3273, 8897, 24184, 65739, 178698, 485751, 1320408, 3589241, 9756569, 26521104, 72091835, 195965925, 532690613, 1448003214, 3936080824, 10699376979, 29083922018, 79058296722, 214902731368, 584166189564, 1587928337892, 4316436745787
Offset: 1
Keywords
Examples
a(1)=1 because 1 >= 1, a(2)=3 because 1/2 + 1/3 + 1/4 = 1.0833... >= 1, etc.
Crossrefs
Programs
-
PARI
default(realprecision, 10^5); e=exp(1); lista(nn) = {my(r=1); print1(r); for(n=2, nn, print1(", ", -r+(r=floor(e*r+(e+1)/2+(e-1/e)/(24*(r+1/2)))))); } \\ Jinyuan Wang, Mar 31 2020
-
Python
x = 0.0 y = 0.0 for i in range(1,100000000000000000000000): y += 1 x = x + 1/i if x >= 1: print(y) y = 0 x = 0
Formula
a(n) = min(p): Sum_{b=r+1..p+r} 1/b >= 1, r = Sum_{k=1..n-1} a(k), a(1) = 1.
Extensions
a(20)-a(21) from Giovanni Resta, Jan 14 2020
More terms from Jinyuan Wang, Mar 31 2020
Comments