A331037 Numbers k such that the sum of the divisors of k (except for 1 and k) plus the sum of the digits of k is equal to k.
1, 2, 3, 5, 7, 14, 52, 76, 2528, 9536, 9664, 35456, 138496, 8456192, 33665024, 33673216, 537444352, 2148958208, 137454419968
Offset: 1
Examples
The first term that is not 1 or a single-digit prime is obtained by adding the proper divisors of 14 other than 1 (2,7) to its digits (1,4): (2+7) + (1+4) = 14. The second such term is 52: the proper divisors of 52 other than 1 (2,4,13,26) and its digits (5,2) sum to (2+4+13+26) + (5+2) = 52.
Programs
-
Mathematica
Select[Range[10^7], DivisorSigma[1, #] - # - If[# == 1, 0, 1] + Plus @@ IntegerDigits[#] == # &] (* Amiram Eldar, Jan 12 2020 *)
-
PARI
is(n) = n == sigma(n)-1-if(n>1,n,0)+sumdigits(n) \\ Rémy Sigrist, Jan 08 2020
Extensions
a(14)-a(16) from Rémy Sigrist, Jan 08 2020
a(17)-a(19) from Giovanni Resta, Jan 14 2020
Comments