cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Joseph E. Marrow

Joseph E. Marrow's wiki page.

Joseph E. Marrow has authored 5 sequences.

A384156 Number of group Schur rings of the cyclic group Z_n.

Original entry on oeis.org

1, 1, 2, 3, 3, 7, 4, 10, 7, 10, 34, 32, 6, 13, 21
Offset: 1

Author

Joseph E. Marrow, May 20 2025

Keywords

Crossrefs

A383219 Number of nilpotent semigroups by order, up to isomorphism and anti-isomorphism.

Original entry on oeis.org

0, 0, 1, 2, 10, 93, 2813, 616830, 1833587417, 52972875977730
Offset: 0

Author

Joseph E. Marrow, Apr 19 2025

Keywords

Crossrefs

Cf. A001423.

A331096 Numbers k such that the sum of all divisors except k, minus the sum of the digits of k, is equal to k.

Original entry on oeis.org

20, 66, 138, 174, 246, 282, 318, 354, 426, 534, 606, 642, 822, 1038, 1074, 1146, 1182, 1362, 1434, 1506, 1542, 1614, 1902, 2082, 2118, 2154, 2334, 2406, 2514, 2802, 3018, 3054, 3126, 3342, 3414, 3522, 3702, 4062, 4206, 4314, 5034, 5142, 5322, 6114, 7122, 7232, 7302, 8202
Offset: 1

Author

Joseph E. Marrow, Jan 08 2020

Keywords

Comments

The first two odd elements are a(49) = 8415 and a(107) = 31815.- Robert Israel, Jan 16 2020

Crossrefs

Cf. A007953 (sum of digits), A001065 (sum of proper divisors).
Related sequences are A331037 and A331093.

Programs

  • Magma
    [k:k in [1..8250]| DivisorSigma(1,k) eq 2*k+&+Intseq(k)]; // Marius A. Burtea, Jan 11 2020
  • Maple
    filter:= proc(k) numtheory:-sigma(k)-convert(convert(k,base,10),`+`)=2*k end proc:
    select(filter, [$1..10000]); # Robert Israel, Jan 16 2020
  • Mathematica
    Select[Range[10^4], DivisorSigma[1, #] - Plus @@ IntegerDigits[#] == 2 # &] (* Amiram Eldar, Jan 11 2020 *)
  • PARI
    isok(k) = sigma(k) - k - sumdigits(k) == k; \\ Michel Marcus, Jan 11 2020
    

A331093 Numbers such that the sum of their divisors, excluding 1 and the number itself, minus the sum of their digits equals the number.

Original entry on oeis.org

12, 114256, 6988996, 8499988, 8689996, 8789788, 8877988, 8988868, 8999956, 9696988, 9759988, 9899596, 9948988, 9996868, 9998884, 9999892, 15996988, 16878988, 17799796, 17887996, 17988796, 17999884, 18579988, 18768988, 18869788, 18895996, 18958996, 18995788, 19398988, 19587988, 19698868, 19777996, 19799668
Offset: 1

Author

Joseph E. Marrow, Jan 08 2020

Keywords

Comments

After the second term, it seems that the digit sum is 55.
All terms after a(2) appear to be of the form 2^2 * 7 * p, where p is a prime. - Scott R. Shannon, Jan 09 2020
If there exists a third term not of the form 2^2*7*p, it is larger than 10^13. - Giovanni Resta, Jan 14 2020

Examples

			a(3) = 6988996 as the sum of the divisors of 6988996, excluding 1 and 6988996, equals 6989051, the sum of its digits equals 55, and 6989051 - 55 = 6988996.
		

Crossrefs

Cf. A331037 (sum of divisors + digit sum = number).

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - Plus @@ IntegerDigits[#] == 2 # + 1 &] (* Amiram Eldar, Jan 08 2020 *)
  • PARI
    isok(n) = sigma(n) - n - 1 - sumdigits(n) == n; \\ Michel Marcus, Jan 09 2020

Extensions

Terms a(7) and beyond from Scott R. Shannon, Jan 09 2020

A331037 Numbers k such that the sum of the divisors of k (except for 1 and k) plus the sum of the digits of k is equal to k.

Original entry on oeis.org

1, 2, 3, 5, 7, 14, 52, 76, 2528, 9536, 9664, 35456, 138496, 8456192, 33665024, 33673216, 537444352, 2148958208, 137454419968
Offset: 1

Author

Joseph E. Marrow, Jan 08 2020

Keywords

Comments

Additional terms include 537444352, 2148958208, 137454419968, 35184644718592, 9007202811510784. Are there any terms > 1 not of the form 2^k*p where p is prime and k>0? - David A. Corneth, Jan 08 2020
Terms not of the form 2^k*p do exist, for example 2^15*65713*24194197 and 2^19*1739719*2639431. - Giovanni Resta, Jan 08 2020
a(20) > 10^13. - Giovanni Resta, Jan 14 2020

Examples

			The first term that is not 1 or a single-digit prime is obtained by adding the proper divisors of 14 other than 1 (2,7) to its digits (1,4): (2+7) + (1+4) = 14.
The second such term is 52: the proper divisors of 52 other than 1 (2,4,13,26) and its digits (5,2) sum to (2+4+13+26) + (5+2) = 52.
		

Crossrefs

Cf. A331093 (sum of divisors - digit sum = the number).

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] - # - If[# == 1, 0, 1] + Plus @@ IntegerDigits[#] == # &] (* Amiram Eldar, Jan 12 2020 *)
  • PARI
    is(n) = n == sigma(n)-1-if(n>1,n,0)+sumdigits(n) \\ Rémy Sigrist, Jan 08 2020

Extensions

a(14)-a(16) from Rémy Sigrist, Jan 08 2020
a(17)-a(19) from Giovanni Resta, Jan 14 2020