cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331322 a(n) = (3*n + 1)!/(n!)^3.

Original entry on oeis.org

1, 24, 630, 16800, 450450, 12108096, 325909584, 8779605120, 236637794250, 6380456082000, 172080900531540, 4641917845743360, 125235075213284400, 3379123922914656000, 91184624634161304000, 2460769070127233057280, 66411927755894739034170, 1792432652235221330334000
Offset: 0

Views

Author

Peter Luschny, Jan 18 2020

Keywords

Comments

Diagonal of the rational function 1 / (1 - x - y - z)^2. - Ilya Gutkovskiy, Apr 23 2025

Crossrefs

Programs

  • Magma
    [(n+1)^2*Binomial(3*n+1,n+1)*Catalan(n): n in [0..25]]; // G. C. Greubel, Mar 22 2022
    
  • Maple
    a := n -> (3*n+1)!/(n!)^3: seq(a(n), n=0..17); # Or:
    hypergeom([2/3, 4/3], [1], 27*x): ser := series(%, x, 20):
    seq(coeff(%, x, n), n=0..17); # Or:
    a := proc(n) option remember; if n=0 then 1 else 3*(9 - n^(-2))*a(n-1) fi end:
    # 4th Maple program:
    W:=proc(x)sqrt(3)*MeijerG([[], [0, 0]], [[1/3, -1/3], []], x/27)/(18*Pi);end;
    a:=proc(n) round(evalf[32](int(x^n*W(x),x=0..27)));end;
    seq(a(n),n=0..17);
    # Karol A. Penson, Jul 28 2023
  • Mathematica
    Table[(3*n+1)*Binomial[3*n,n]*Binomial[2*n,n], {n,0,25}] (* G. C. Greubel, Mar 22 2022 *)
  • Sage
    [(3*n+1)*binomial(2*n,n)*binomial(3*n,n) for n in (0..25)] # G. C. Greubel, Mar 22 2022

Formula

a(n) = [x^n] hypergeom([2/3, 4/3], [1], 27*x).
a(n) = 3*(9 - n^(-2))*a(n-1) for n > 0.
a(n) = (-1)^n*A331431(2*n, n).
a(n) = (n+1)^2*A117671(n)*A000108(n). - G. C. Greubel, Mar 22 2022
From Karol A. Penson, Jul 28 2023: (Start)
a(n) = Integral_{x=0..27} x^n*W(x) dx, where the weight function W(x) is defined on (0, 27) and it can be expressed with the Meijer G-function MeijerG as: W(x) = (sqrt(3)/(18*Pi))*MeijerG([[],[0,0]],[[-1/3,1/3],[]],x/27). The function W(x) is positive on its support (0, 27), is singular at x=0, and decreases monotonically to zero at x = 27.
The function W(x) is unique as it is the solution of the Hausdorff moment problem with the moments a(n). Due to the presence of two equal parameters (0,0) in MeijerG, it is not certain if W(x) can be represented by other known special functions. (End)
From Peter Bala, Oct 10 2024: (Start)
a(n) = (3*n + 1)*A006480(n).
a(n-1) = 1/(8*n^3) * Sum_{k = 0..2*n} (-1)^(n+k) * k*(2*n-k)^3 * binomial(2*n, k)^3 for n >= 1.
a(n-1) = 1/(4*n^2) * Sum_{k = 0..2*n-1} (-1)^(n+k) * k^3 * binomial(2*n, k)^2 * binomial(2*n-1, k) for n >= 1. (End)