cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A331347 Number of permutations w in S_n that form Boolean intervals [s, w] in the Bruhat order for every simple reflection s in the support of w.

Original entry on oeis.org

1, 2, 6, 15, 37, 93, 238, 616, 1604, 4189, 10955, 28667, 75036, 196430, 514242, 1346283, 3524593, 9227481, 24157834, 63246004, 165580160, 433494457, 1134903191, 2971215095, 7778742072, 20365011098, 53316291198, 139583862471, 365435296189, 956722026069
Offset: 1

Views

Author

Bridget Tenner, Jan 14 2020

Keywords

Examples

			a(4) = 15 because the permutations with this property in S_4 are all permutations of length < 4.
		

Crossrefs

Cf. A001519.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1-3*x+4*x^2-4*x^3+x^4)/((1-x)^2*(1-3*x+x^2)))); // Marius A. Burtea, Jan 15 2020
  • Mathematica
    Join[{1},Table[Fibonacci[2n-1]+n-2,{n,2,30}]] (* or *) LinearRecurrence[ {5,-8,5,-1},{1,2,6,15,37},30] (* Harvey P. Dale, Feb 21 2020 *)
  • PARI
    Vec(x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)) + O(x^30)) \\ Colin Barker, Jan 14 2020
    

Formula

a(n) = Fibonacci(2n-1) + n - 2 = A001519(n) + n - 2.
From Colin Barker, Jan 14 2020: (Start)
G.f.: x*(1 - 3*x + 4*x^2 - 4*x^3 + x^4) / ((1 - x)^2*(1 - 3*x + x^2)).
a(n) = 5*a(n-1) - 8*a(n-2) + 5*a(n-3) - a(n-4) for n>5.
(End)
E.g.f.: 1 + exp((1/2)*(3-sqrt(5))*x)*(3 + sqrt(5) + 2*exp(sqrt(5)*x))/(5 + sqrt(5)) + exp(x)*(x - 2). - Stefano Spezia, Jan 15 2020