A385716
Expansion of 1/((1-x) * (1-13*x))^(3/2).
Original entry on oeis.org
1, 21, 348, 5320, 78135, 1120287, 15805972, 220445316, 3047961735, 41857891075, 571725145992, 7774356136092, 105324231178621, 1422411298153125, 19157947746089520, 257427540725705056, 3451990965984505251, 46205867184493459023, 617482101788090727220, 8239952016851603641320
Offset: 0
-
Module[{x}, CoefficientList[Series[1/((1-x)*(1-13*x))^(3/2), {x, 0, 25}], x]] (* Paolo Xausa, Aug 25 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-13*x))^(3/2))
A385563
Expansion of 1/((1-x) * (1-5*x))^(3/2).
Original entry on oeis.org
1, 9, 60, 360, 2055, 11403, 62132, 334260, 1781415, 9425295, 49581576, 259601004, 1353939405, 7038232425, 36484340400, 188665670880, 973545780195, 5014258620075, 25783103206100, 132378800689800, 678768332410245, 3476164133573505, 17782899991147500
Offset: 0
-
Module[{a, n}, RecurrenceTable[{a[n] == ((6*n+3)*a[n-1] - 5*(n+1)*a[n-2])/n, a[0] == 1, a[1] == 9}, a, {n, 0, 25}]] (* Paolo Xausa, Aug 21 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(3/2))
A331514
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/(1 - 2*k*x + ((k-2)*x)^2)^(3/2).
Original entry on oeis.org
1, 1, 0, 1, 3, -6, 1, 6, 6, 0, 1, 9, 30, 10, 30, 1, 12, 66, 140, 15, 0, 1, 15, 114, 450, 630, 21, -140, 1, 18, 174, 1000, 2955, 2772, 28, 0, 1, 21, 246, 1850, 8430, 18963, 12012, 36, 630, 1, 24, 330, 3060, 18855, 69384, 119812, 51480, 45, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 3, 6, 9, 12, 15, ...
-6, 6, 30, 66, 114, 174, ...
0, 10, 140, 450, 1000, 1850, ...
30, 15, 630, 2955, 8430, 18855, ...
0, 21, 2772, 18963, 69384, 187425, ...
-
T[n_, k_] = 1/2 * Sum[If[k == 2 && n == j - 1, 1, (k - 2)^(n + 1 - j)] * j * Binomial[n + 1, j] * Binomial[n + 1 + j, j], {j, 1, n + 1}]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)
-
T(n,k) = (1/2)*sum(j=1,n+1,(k-2)^(n+1-j)*j*binomial(n+1,j)*binomial(n+1+j,j));
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Jan 20 2020
A331793
Expansion of ((1 - 5*x)/sqrt(1 - 10*x + 9*x^2) - 1)/(8*x^2).
Original entry on oeis.org
1, 10, 87, 740, 6285, 53550, 458115, 3934600, 33913881, 293244050, 2542684463, 22101612780, 192530903461, 1680415209270, 14692052109915, 128653303453200, 1128147127156785, 9905115333850650, 87066787614156807, 766127762539955700, 6747880819438628541
Offset: 0
-
a[n_] := Sum[4^k * Binomial[n + 1, k] * Binomial[n + 1, k + 1], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, May 05 2021 *)
-
my(N=30, x='x+O('x^N)); Vec(((1-5*x)/sqrt(1-10*x+9*x^2)-1)/(8*x^2))
-
a(n) = sum(k=0, n, 4^k*binomial(n+1, k)*binomial(n+1, k+1));
A383946
Expansion of 1/sqrt((1-9*x)^3 * (1-x)).
Original entry on oeis.org
1, 14, 159, 1676, 17005, 168570, 1645035, 15873240, 151863705, 1443272870, 13643264503, 128404376292, 1204055841157, 11255397745298, 104933302809795, 976016662472880, 9059771065058865, 83945271527170110, 776569280469986895, 7173673630527966780, 66182347507155379101, 609866573826736447914
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/Sqrt((1- 9*x)^3 * (1-x)); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 27 2025
-
CoefficientList[Series[1/Sqrt[(1-9*x)^3*(1-x)],{x,0,33}],x] (* Vincenzo Librandi, Aug 27 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-9*x)^3*(1-x)))
A387313
Expansion of 1/((1-x) * (1-9*x))^(5/2).
Original entry on oeis.org
1, 25, 415, 5775, 72870, 864150, 9818130, 108109650, 1162302735, 12262882775, 127424209913, 1307536637225, 13276264807260, 133597932407100, 1334029357684980, 13231465264538100, 130461712570627245, 1279632533997010725, 12492837802976030115, 121456026730456739475
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-9*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
-
CoefficientList[Series[1/((1-x)*(1-9*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
-
my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-9*x))^(5/2))
Showing 1-6 of 6 results.