cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A097248 a(n) is the eventual stable point reached when iterating k -> A097246(k), starting from k = n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 6, 5, 10, 11, 5, 13, 14, 15, 5, 17, 10, 19, 15, 21, 22, 23, 10, 7, 26, 15, 21, 29, 30, 31, 10, 33, 34, 35, 15, 37, 38, 39, 30, 41, 42, 43, 33, 7, 46, 47, 15, 11, 14, 51, 39, 53, 30, 55, 42, 57, 58, 59, 7, 61, 62, 35, 15, 65, 66, 67, 51, 69, 70, 71, 30, 73, 74, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2004

Keywords

Comments

a(n) = r(n,m) with m such that r(n,m)=r(n,m+1), where r(n,k) = A097246(r(n,k-1)), r(n,0)=n. (The original definition.)
A097248(n) = r(n,a(n)).
From Antti Karttunen, Nov 15 2016: (Start)
The above remark could be interpreted to mean that A097249(n) <= a(n).
All terms are squarefree, and the squarefree numbers are the fixed points.
These are also fixed points eventually reached when iterating A277886.
(End)

Crossrefs

Range of values is A005117.
A003961, A225546, A277885, A277886, A331590 are used to express relationship between terms of this sequence.
The formula section also details how the sequence maps the terms of A007913, A260443, A329050, A329332.
See comments/formulas in A283475, A283478, A331751 giving their relationship to this sequence.

Programs

  • Mathematica
    Table[FixedPoint[Times @@ Map[#1^#2 & @@ # &, Partition[#, 2, 2] &@ Flatten[FactorInteger[#] /. {p_, e_} /; e >= 2 :> {If[OddQ@ e, {p, 1}, {1, 1}], {NextPrime@ p, Floor[e/2]}}]] &, n], {n, 75}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    A097246(n) = { my(f=factor(n)); prod(i=1, #f~, (nextprime(f[i,1]+1)^(f[i,2]\2))*((f[i,1])^(f[i,2]%2))); };
    A097248(n) = { my(k=A097246(n)); while(k<>n, n = k; k = A097246(k)); k; };
    \\ Antti Karttunen, Mar 18 2017
    
  • Python
    from sympy import factorint, nextprime
    from operator import mul
    def a097246(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [(nextprime(i)**int(f[i]/2))*(i**(f[i]%2)) for i in f])
    def a(n):
        k=a097246(n)
        while k!=n:
            n=k
            k=a097246(k)
        return k # Indranil Ghosh, May 15 2017
  • Scheme
    ;; with memoization-macro definec
    ;; Two implementations:
    (definec (A097248 n) (if (not (zero? (A008683 n))) n (A097248 (A097246 n))))
    (definec (A097248 n) (if (zero? (A277885 n)) n (A097248 (A277886 n))))
    ;; Antti Karttunen, Nov 15 2016
    

Formula

a(A005117(n)) = A005117(n).
From Antti Karttunen, Nov 15 2016: (Start)
If A008683(n) <> 0 [when n is squarefree], a(n) = n, otherwise a(n) = a(A097246(n)).
If A277885(n) = 0, a(n) = n, otherwise a(n) = a(A277886(n)).
A007913(a(n)) = a(n).
a(A007913(n)) = A007913(n).
A048675(a(n)) = A048675(n).
a(A260443(n)) = A019565(n).
(End)
From Peter Munn, Feb 06 2020: (Start)
a(1) = 1; a(p) = p, for prime p; a(m*k) = A331590(a(m), a(k)).
a(A331590(m,k)) = A331590(a(m), a(k)).
a(n^2) = a(A003961(n)) = A003961(a(n)).
a(A225546(n)) = a(n).
a(n) = A225546(2^A048675(n)) = A019565(A048675(n)).
a(A329050(n,k)) = prime(n+k-1) = A000040(n+k-1).
a(A329332(n,k)) = A019565(n * k).
Equivalently, a(A019565(n)^k) = A019565(n * k).
(End)
From Antti Karttunen, Feb 22-25 & Mar 01 2020: (Start)
a(A019565(x)*A019565(y)) = A019565(x+y).
a(A332461(n)) = A332462(n).
a(A332824(n)) = A019565(n).
a(A277905(n,k)) = A277905(n,1) = A019565(n), for all n >= 1, and 1 <= k <= A018819(n).
(End)

Extensions

Name changed and the original definition moved to the Comments section by Antti Karttunen, Nov 15 2016

A331750 a(n) = A048675(sigma(n)).

Original entry on oeis.org

0, 2, 2, 8, 3, 4, 3, 6, 32, 5, 4, 10, 9, 5, 5, 1024, 5, 34, 6, 11, 5, 6, 5, 8, 1024, 11, 7, 11, 7, 7, 5, 12, 6, 7, 6, 40, 129, 8, 11, 9, 11, 7, 18, 12, 35, 7, 6, 1026, 130, 1026, 7, 17, 7, 9, 7, 9, 8, 9, 8, 13, 1025, 7, 35, 1073741824, 12, 8, 66, 13, 7, 8, 7, 38, 2049, 131, 1026, 14, 7, 13, 8, 1027, 32, 13, 12, 13, 8, 20, 9
Offset: 1

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A048675(A000203(n)).
Additive with a(p^e) = A048675(sigma(p^e)) = A048675(1 + p + p^2 + ... + p^e).

A331752 Numbers k such that squarefree part of sigma(k) is equal to squarefree part of 2*k.

Original entry on oeis.org

6, 28, 468, 496, 775, 2268, 3780, 4655, 7448, 8128, 9000, 10880, 10976, 25137, 40131, 40176, 58752, 62775, 66960, 91000, 137541, 137940, 140800, 160930, 167400, 173600, 195938, 224450, 307125, 377055, 399360, 406224, 417477, 494832, 569184, 603288, 634725, 639158, 658368, 773175, 869022, 881280, 889056, 1005480
Offset: 1

Views

Author

Antti Karttunen, Feb 06 2020

Keywords

Comments

Numbers k such that A007913(sigma(k)) is equal to A007913(2*k), thus numbers for which sigma(k) has the same set of distinct prime factors with an odd exponent as 2*k.
Among the first 257 terms, these four are also in A228058:
46277101 = 61 * 13^2 * 67^2,
49889853 = 13 * 3^2 * 653^2,
106706925 = 13 * 3^2 * 5^2 * 191^2,
676830973 = 37 * 7^2 * 13^2 * 47^2.

Examples

			For n = 46277101 = 61 * 13^2 * 67^2, sigma(46277101) = 51703722 = 2 * 3^2 * 7^2 * 31^2 * 61, with A007913(sigma(46277101)) = 2*61 = A007913(2*46277101), thus 46277101 is included in this sequence.
		

Crossrefs

Cf. A000396 (a subsequence).

Programs

  • Mathematica
    Select[Range[10^6], SameQ @@ Map[Sqrt[#] /. (c_: 1)*a_^(b_: 0) :> (c*a^b)^2 &, {DivisorSigma[1, #], 2 #}] &] (* Michael De Vlieger, Feb 08 2020, after Bill Gosper at A007913 *)
  • PARI
    isA331752(n) = (core(2*n)==core(sigma(n)));

A332208 Numbers k such that the squarefree kernel of sigma(k) is equal to the squarefree kernel of 2*k.

Original entry on oeis.org

6, 28, 120, 135, 270, 496, 672, 891, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 200655, 273000, 293760, 307125, 401310, 441936, 446880, 502740, 523776, 544635, 614250, 707616, 802620, 819000, 884520
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2020

Keywords

Comments

Numbers k such that sigma(k) has the same set of distinct prime factors as 2*k.
Numbers k such that A007947(sigma(k)) is equal to A007947(2*k), or equally, that A087207(sigma(k)) is equal to A087207(2*k).
Of the first 256 terms 44 are odd, and none occurs in A228058. Compare also to A331752.

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], SameQ @@ Map[Times @@ FactorInteger[#][[All, 1]] &, {DivisorSigma[1, #], 2 #}] &] (* Michael De Vlieger, Feb 08 2020 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]);
    isA332208(n) = (A007947(sigma(n)) == A007947(2*n));

Formula

{n: A080398(n) == A007947(2n)}.

A332446 Numbers k for which A087808(sigma(k)) is equal to A087808(2*k).

Original entry on oeis.org

3, 6, 11, 19, 28, 43, 59, 67, 83, 107, 131, 139, 163, 179, 211, 216, 227, 251, 267, 283, 286, 307, 331, 347, 379, 419, 443, 467, 491, 496, 499, 523, 547, 563, 571, 587, 598, 619, 643, 659, 683, 691, 726, 739, 787, 811, 827, 859, 883, 907, 947, 971, 1019, 1051, 1091, 1123, 1163, 1171, 1187, 1259, 1283, 1291, 1307, 1427, 1451
Offset: 1

Views

Author

Antti Karttunen, Feb 14 2020

Keywords

Comments

Conjecture: includes all terms of A007520. - Bill McEachen, Dec 10 2023

Crossrefs

Subsequences: A000396, A332445.
Cf. A331751, A331752, A332208 for similar sequences.

Programs

A335913 a(n) = A225546(sigma(n)).

Original entry on oeis.org

1, 4, 3, 256, 8, 12, 6, 64, 4294967296, 18, 12, 768, 512, 24, 24
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2020

Keywords

Comments

Term a(16) has 309 digits (1025 bits).
This is not multiplicative. Even though a(2*3) = a(2)*a(3), a(2*7) = a(2)*a(7), and a(3*5) = a(3)*a(5), we still have a(2*5) = 18 <> a(2)*a(5) = 4*8 = 32.

Crossrefs

Programs

  • Mathematica
    Array[If[# == 1, 1, Times @@ Flatten@ Map[Function[{p, e}, Map[Prime[Log2@ # + 1]^(2^(PrimePi@ p - 1)) &, DeleteCases[NumberExpand[e, 2], 0]]] @@ # &, FactorInteger[#]]] &@ DivisorSigma[1, #] &, 15] (* Michael De Vlieger, Jul 08 2020 *)
  • PARI
    A335913(n) = A225546(sigma(n));

Formula

a(n) = A225546(A000203(n)).
A048675(a(n)) = A331750(n).

A347875 Numbers k such that A323905(sigma(k)) is equal to A323905(2*k).

Original entry on oeis.org

1, 6, 21, 28, 496, 8128
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2021

Keywords

Comments

Numbers k such that A323905(sigma(k)) = A332221(k) - A331750(k) is equal to 2*A156552(k) - A048675(k) = A156552(k) + A323905(k).

Crossrefs

Cf. also A000396 (subsequence), A331751, A347392.

Programs

  • PARI
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A323905(n) = (A156552(n) - A048675(n));
    isA347875(n) = (A323905(sigma(n))==A323905(2*n));
Showing 1-7 of 7 results.