A331968 Maximum number of unit squares of a snake-like polyomino in an n X n square box.
1, 3, 7, 11, 17, 24, 33, 42, 53, 64, 77, 92, 107, 123, 142, 162, 182
Offset: 1
Examples
For n=4, the maximum length of a snake-like polyomino that fits in a square of side 4 is 11 and there are 84 such snakes. Maximum-length snakes for n = 1 to 4 are shown below. X X X X X X X X X X X X X X X X X X X X X X
Links
- Nikolai Beluhov, Snake paths in king and knight graphs, arXiv:2301.01152 [math.CO], 2023.
- Alain Goupil, Illustration of initial terms
- Eric Weisstein's World of Mathematics, Grid Graph
Crossrefs
Formula
a(n) >= A047838(n+1).
For n > 2: a(n) >= 2*floor(n/3)*(2n-3*floor(n/3)-2)+5. - Elijah Beregovsky, May 11 2020
a(n) <= (2*n*(n+1)-1)/3. - Elijah Beregovsky, Nov 09 2020
a(n) = 2*n^2/3 + O(n) (Beluhov 2023). - Pontus von Brömssen, Jan 30 2023
Extensions
a(15) from Andrew Howroyd, Feb 04 2020
a(16)-a(17) from Yi Yang, Oct 03 2022
Comments