cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A357357 Length of the longest induced cycle in the n X n grid graph.

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 32, 40, 50, 62, 76, 90, 104, 120, 140, 160, 180
Offset: 1

Views

Author

Pontus von Brömssen, Sep 25 2022

Keywords

Examples

			For 2 <= n <= 6, a longest induced cycle is the one going around the border of the grid, so a(n) = 4*(n-1).
Longest induced cycles for 6 <= n <= 8:
  X X X X X X   X X X X X X X   X X X X X X X X
  X . . . . X   X . . . . . X   X . . . . . . X
  X . . . . X   X . X X X . X   X . X X X . X X
  X . . . . X   X . X . X . X   X . X . X . X .
  X . . . . X   X . X . X . X   X . X . X . X X
  X X X X X X   X . X . X . X   X . X . X . . X
                X X X . X X X   X . X . X . . X
                                X X X . X X X X
		

Crossrefs

Main diagonal of A360915.
Cf. A000937, A297664, A331968, A357358, A360914 (number of longest induced cycles).

Formula

a(n) <= A331968(n)+1.
a(n) = 2*n^2/3 + O(n) (Beluhov 2023). - Pontus von Brömssen, Jan 30 2023

Extensions

a(9)-a(12) from Elijah Beregovsky, Nov 24 2022
a(13) from Elijah Beregovsky, Nov 25 2022
a(14)-a(17) from Andrew Howroyd, Feb 26 2023

A331986 Number of snake-like polyominoes with the maximum possible number of unit squares in an n X n square.

Original entry on oeis.org

1, 4, 8, 84, 56, 136, 52, 216, 16, 1504, 2352, 1152, 1344, 123216, 82432, 11008, 308992
Offset: 1

Views

Author

Alain Goupil, Feb 03 2020

Keywords

Comments

The maximum possible number of unit squares is given by A331968(n).
Equivalently, a(n) is the number of maximum length paths without chords in the n X n grid graph. A path without chords is an induced subgraph that is a path.
For n > 1, a(n) is a multiple of 4 since a solution can have at most one symmetry considering rotations and reflections. - Andrew Howroyd, Feb 04 2020

Examples

			For n = 4 the number of snake-like polyominoes with 11 cells is 84.
		

Crossrefs

Main diagonal of A360916.
Cf. A331968, A059525 (connected induced subgraphs), A099155.
Cf. A332920 (non-isomorphic snakes), A332921 (symmetric snakes).

Extensions

a(15) from Andrew Howroyd, Feb 04 2020
a(16)-a(17) from Yi Yang, Oct 03 2022

A357234 a(n) is the maximum length of a snake-like polyomino in an n X n square that starts and ends at opposite corners.

Original entry on oeis.org

1, 3, 5, 7, 17, 23, 31, 39, 51, 63, 75, 89, 105, 121, 139, 159
Offset: 1

Views

Author

Yi Yang, Sep 18 2022

Keywords

Comments

Snake-like polyominoes have all cells with at most two neighbor cells, and have at least one cell that has only one neighbor cell, where neighbors are horizontal or vertical (not diagonal).
Lower bounds for a(10)-a(22) are 63, 75, 89, 105, 121, 139, 159, 179, 201, 225, 249, 275, 303. Is it true that a(n) = round((2*n*n-4*n+28)/3) for n >= 9?

Examples

			Longest snakes for 5 <= n <= 8:
  X X X X X   X X X X X X   X X X . X X X   X . X X X X X X
  . . . . X   . . . . . X   . . X . X . X   X . X . . . . X
  X X X X X   X X X X X X   X X X . X . X   X . X X X X . X
  X . . . .   X . . . . .   X . . X X . X   X X . . . X . X
  X X X X X   X . X X X X   X . . X . X X   . X . X X X . X
              X X X . . X   X . . X . X .   X X . X . . X X
                            X X X X . X X   X . . X . . X .
                                            X X X X . . X X
		

Crossrefs

Formula

a(n) ~ 2*n^2/3. - Pontus von Brömssen, Sep 19 2022
a(n) <= A331968(n). - Pontus von Brömssen, Sep 21 2022

Extensions

a(1)-a(9) confirmed by Pontus von Brömssen, Sep 21 2022. - N. J. A. Sloane, Sep 30 2022
a(10)-a(13) confirmed by Elijah Beregovsky, Nov 27 2022
a(14)-a(16) from Andrew Howroyd, Feb 28 2023

A360917 Array read by antidiagonals: T(m,n) is the number of vertices in the longest induced path in the grid graph P_m X P_n.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 5, 5, 4, 5, 6, 7, 6, 5, 6, 8, 9, 9, 8, 6, 7, 9, 11, 11, 11, 9, 7, 8, 11, 14, 14, 14, 14, 11, 8, 9, 12, 16, 17, 17, 17, 16, 12, 9, 10, 14, 18, 20, 21, 21, 20, 18, 14, 10, 11, 15, 20, 22, 24, 24, 24, 22, 20, 15, 11, 12, 17, 22, 25, 27, 29, 29, 27, 25, 22, 17, 12
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Comments

Equivalently, T(m,n) is the maximum number of unit squares of a snake-like polyomino in an m X n rectangle.

Examples

			Array begins:
==============================================
  m\n|  1  2  3  4  5  6  7  8  9 10 11 12 ...
-----+----------------------------------------
   1 |  1  2  3  4  5  6  7  8  9 10 11 12 ...
   2 |  2  3  5  6  8  9 11 12 14 15 17 18 ...
   3 |  3  5  7  9 11 14 16 18 20 22 24 26 ...
   4 |  4  6  9 11 14 17 20 22 25 28 30 33 ...
   5 |  5  8 11 14 17 21 24 27 30 34 37 40 ...
   6 |  6  9 14 17 21 24 29 32 36 40 44 47 ...
   7 |  7 11 16 20 24 29 33 38 42 46 50 55 ...
   8 |  8 12 18 22 27 32 38 42 48 52 57 62 ...
   9 |  9 14 20 25 30 36 42 48 53 58 64 70 ...
  10 | 10 15 22 28 34 40 46 52 58 64 71 77 ...
  11 | 11 17 24 30 37 44 50 57 64 71 77 86 ...
  12 | 12 18 26 33 40 47 55 62 70 77 86 92 ...
  ...
		

Crossrefs

Main diagonal is A331968.
Cf. A360199, A360915, A360916 (maximum induced paths), A360920.

Formula

T(m,n) = T(n,m).
T(m,n) = 2*m*n/3 + O(m+n) (Beluhov 2023, Proposition 3). - Pontus von Brömssen, May 08 2023

A332920 Number of non-isomorphic free unrooted snake-shaped polyominoes of maximum length on a quadratic board of n X n squares.

Original entry on oeis.org

1, 1, 2, 12, 8, 17, 8, 27, 3, 188
Offset: 1

Views

Author

Hugo Pfoertner, Mar 05 2020

Keywords

Comments

Polyominoes only differing by any combination of translation, rotation and reflection are counted only once.

Examples

			a(4) = 12 (L = A331968(4) = 11):
  A332921(4) = 3 symmetric snakes
  . X O .     . X O O     . X O O     X . X O     X . X .     X . X O
  X . O O     X . . O     X . . O     O . . O     O . O O     O . . O
  O O . O     O . . O     O . O O     O . . O     O . . O     O . O O
  . O O O     O O O O     O O O .     O O O O     O O O O     O O O .
.
  X . X O     X . X .     X . X O     . X O .     . O O O     . O O O
  O . . O     O . O O     O O . O     X . O O     . X . O     . X . O
  O O . O     O O . O     . O . O     O . . O     X . . O     X . O O
  . O O O     . O O O     . O O O     O O O O     O O O O     O O O .
.
a(5) = 8 (L = 17)
  A332921(5) = 2 symmetric snakes
  O O O O X       O O O O O       O O O O O       X . O O X
  O . . . .       O . . . O       O . . . O       O . O . .
  O O O O O       O O . O O       O O X . O       O . O O O
  . . . . O       . O . O .       . . . . O       O . . . O
  X O O O O       X O . O X       X O O O O       O O O O O
.
  O O O O .       O O O O O       X . O O X       O O O O .
  O . . O O       O . . . O       O . O . .       O . . O O
  O O X . O       O O X . O       O . O O O       O O X . O
  . . . . O       . . . O O       O O . . O       . . . O O
  X O O O O       X O O O .       . O O O O       X O O O .
		

Crossrefs

Cf. A331968 (maximum length), A331986 (counts including isomorphisms), A332921 (subset of symmetric snakes).

A332921 Number of symmetric non-isomorphic free unrooted snake-shaped polyominoes of maximum length on a quadratic board of n X n squares.

Original entry on oeis.org

1, 1, 2, 3, 2, 0, 3, 0, 2, 0
Offset: 1

Views

Author

Hugo Pfoertner, Mar 05 2020

Keywords

Comments

Polyominoes only differing by any combination of translation, rotation and reflection are counted only once.

Examples

			a(1) = 1 (L = A331968(1) = 1):
  X
.
a(2) = 1 (L = 3):
  X O
  . X
.
a(3) = 2 (L = 7):
  X O O    . X O
  . . O    X . O
  X O O    O O O
.
a(4) = 3 (L = 11)
  . X O .     . X O O     . X O O
  X . O O     X . . O     X . . O
  O O . O     O . . O     O . O O
  . O O O     O O O O     O O O .
.
a(5) = 2 (L = 17)
  O O O O X      O O O O O
  O . . . .      O . . . O
  O O O O O      O O . O O
  . . . . O      . O . O .
  X O O O O      X O . O X
.
a(7) = 3 (L = 33)
  O O O . O O O     O O X . O O O     O O O . O O O
  O . O . O . O     O . . O O . O     O . O O O . O
  O . O O O . O     O O . O . O O     O O . . . O O
  O O . . . O O     . O . O . O .     . O O . O O .
  . O O . O O .     O O . O . O O     X . O . O . x
  X . O . O . X     O . O O . . O     O . O . O . O
  O O O . O O O     O O O . X O O     O O O . O O O
.
a(9) = 2 (L = 53)
  . O X . O O O O O    O O X . O O O O O
  O O . O O . . . O    O . . O O . . . O
  O . O O . O O O O    O . O O . O O O O
  O . O . O O . . .    O . O . O O . . .
  O O O . O . O O O    O O O . O . O O O
  . . . O O . O . O    . . . O O . O . O
  O O O O . O O . O    O O O O . O O . O
  O . . . O O . O O    O . . . O O . . O
  O O O O O . X O .    O O O O O . X O O
.
Example for a(9) corrected by _Luke Murphy_, Oct 14 2024
		

Crossrefs

A360200 Number of induced paths in the n X n grid graph.

Original entry on oeis.org

0, 8, 94, 1004, 14864, 334536, 11546874, 629381852, 56094263348, 8343512638896, 2074276200162230, 853966325494701152, 578432462293854136504, 646135466408339553958096, 1200595044818176185884236342
Offset: 1

Views

Author

Andrew Howroyd, Jan 29 2023

Keywords

Comments

Paths of length zero are not counted here.
Equivalently, a(n) is the number of snake-like polyominoes in an n X n square. Rotations, reflections and translations are counted separately.

Examples

			The a(2) = 8 induced paths are:
  O O   O .   . .   . O   O O   O .   . O   O O
  . .   O .   O O   . O   O .   O O   O O   . O
		

Crossrefs

Main diagonal of A360199.
Cf. A059525, A297664 (induced cycles), A331968, A331986 (of maximum length), A357516.

A357359 Maximum number of nodes in an induced path (or chordless path or snake path) in the n X n torus grid graph.

Original entry on oeis.org

5, 8, 14, 21, 28, 39, 50
Offset: 3

Views

Author

Pontus von Brömssen, Sep 25 2022

Keywords

Comments

It is somewhat unclear how a(n) should be defined for n <= 2. If the 1 X 1 and 2 X 2 torus grid graphs are considered to have loops and multiple edges, respectively, we have a(1) = 0 and a(2) = 1 (unless loops and multiple edges are allowed in a path), otherwise a(1) = 1 and a(2) = 3.

Examples

			Longest induced paths (with one end in the lower left corner) for 3 <= n <= 7:
  . X X   . X X .   . X X . X   . X X . X .   . . . X . X X
  X X .   X X . .   . X . X X   X X . X X .   X X . X X . X
  X . .   X . X .   X X . X .   X . X X . X   . X X . X X .
          X . X .   X . X X .   . X X . X X   X . X X . X X
                    X . X . .   X X . . X .   X X . X . . .
                                X . X . X .   . X . X . X X
                                              X X . X . X .
		

Crossrefs

Formula

a(n) ~ 2*n^2/3.
a(n) <= (2*n^2-1)/3.
a(n) >= A357358(n) - 1.
a(n) >= A331968(n-1).

A360921 Maximum number of vertices in an induced tree in the n X n grid graph.

Original entry on oeis.org

1, 3, 7, 12, 19, 26, 36, 46, 59, 72, 87, 102, 120, 138, 159
Offset: 1

Views

Author

Andrew Howroyd, Feb 26 2023

Keywords

Examples

			a(4) = 12:
   O O O O
   O     O
   O O   O
   O   O O
		

Crossrefs

Main diagonal of A360920.
Cf. A331968, A357357, A360919 (maximum induced trees).

Formula

a(n) >= A331968(n).

A357500 Largest number of nodes of an induced path in the n X n knight graph.

Original entry on oeis.org

1, 1, 7, 9, 15, 21, 24, 34
Offset: 1

Views

Author

Pontus von Brömssen, Oct 01 2022

Keywords

Examples

			Longest paths for 3 <= n <= 7:
  X . X   . . . .   . X . X .   . X X X . .   X . X X X . .
  X . X   X . X X   X X . X X   X . . X X X   X . X . . X .
  X X X   . X X .   X . . . X   X . . . X X   . X X . . X .
          X X X X   X X . X X   X X . . . X   . . X . . X X
                    . X X X .   . X X . X X   . . . . . . X
                                . X X X X .   . X X X X X X
                                              X X . X X . .
		

References

  • Thomas Dawson, Échecs Féeriques, L'Échiquier, volume 2, issue 2, 1930; issue 3, 1931.
  • Donald E. Knuth, The Art of Computer Programming, Volume 4B, Combinatorial Algorithms, Part 2, Addison-Wesley, 2023. See exercise 7.2.2.1-172 and its solution.

Crossrefs

Formula

a(n) >= A165143(n) - 1 for n >= 3.
a(n) <= (4*(n^2+3*n-2)-1)/7 for n >= 4. - Elijah Beregovsky, Dec 22 2022
a(n) = n^2/2 + O(n) (Beluhov 2023). - Pontus von Brömssen, Jan 30 2023
Showing 1-10 of 10 results.