A331968
Maximum number of unit squares of a snake-like polyomino in an n X n square box.
Original entry on oeis.org
1, 3, 7, 11, 17, 24, 33, 42, 53, 64, 77, 92, 107, 123, 142, 162, 182
Offset: 1
For n=4, the maximum length of a snake-like polyomino that fits in a square of side 4 is 11 and there are 84 such snakes.
Maximum-length snakes for n = 1 to 4 are shown below.
X X X X X X X X X X
X X X X X
X X X X
X X X
a(16)-a(17) from
Yi Yang, Oct 03 2022
A331986
Number of snake-like polyominoes with the maximum possible number of unit squares in an n X n square.
Original entry on oeis.org
1, 4, 8, 84, 56, 136, 52, 216, 16, 1504, 2352, 1152, 1344, 123216, 82432, 11008, 308992
Offset: 1
For n = 4 the number of snake-like polyominoes with 11 cells is 84.
a(16)-a(17) from
Yi Yang, Oct 03 2022
A332921
Number of symmetric non-isomorphic free unrooted snake-shaped polyominoes of maximum length on a quadratic board of n X n squares.
Original entry on oeis.org
1, 1, 2, 3, 2, 0, 3, 0, 2, 0
Offset: 1
a(1) = 1 (L = A331968(1) = 1):
X
.
a(2) = 1 (L = 3):
X O
. X
.
a(3) = 2 (L = 7):
X O O . X O
. . O X . O
X O O O O O
.
a(4) = 3 (L = 11)
. X O . . X O O . X O O
X . O O X . . O X . . O
O O . O O . . O O . O O
. O O O O O O O O O O .
.
a(5) = 2 (L = 17)
O O O O X O O O O O
O . . . . O . . . O
O O O O O O O . O O
. . . . O . O . O .
X O O O O X O . O X
.
a(7) = 3 (L = 33)
O O O . O O O O O X . O O O O O O . O O O
O . O . O . O O . . O O . O O . O O O . O
O . O O O . O O O . O . O O O O . . . O O
O O . . . O O . O . O . O . . O O . O O .
. O O . O O . O O . O . O O X . O . O . x
X . O . O . X O . O O . . O O . O . O . O
O O O . O O O O O O . X O O O O O . O O O
.
a(9) = 2 (L = 53)
. O X . O O O O O O O X . O O O O O
O O . O O . . . O O . . O O . . . O
O . O O . O O O O O . O O . O O O O
O . O . O O . . . O . O . O O . . .
O O O . O . O O O O O O . O . O O O
. . . O O . O . O . . . O O . O . O
O O O O . O O . O O O O O . O O . O
O . . . O O . O O O . . . O O . . O
O O O O O . X O . O O O O O . X O O
.
Example for a(9) corrected by _Luke Murphy_, Oct 14 2024
Showing 1-3 of 3 results.
Comments