A180632
Minimum length of a string over the alphabet A = {1,2,...,n} that contains every permutation of A as a substring exactly once, also known as length of the minimal super-permutation.
Original entry on oeis.org
0, 1, 3, 9, 33, 153
Offset: 0
For n = 1, 2, 3, 4, the (unique, up to relabeling the symbols) minimal words are:
1
121
123121321
123412314231243121342132413214321
For n = 5, there are exactly 8 distinct (up to relabeling the symbols) minimal words.
Comment from _N. J. A. Sloane_, Mar 27 2015: From the Houston (2014 arXiv) paper, a superpermutation of length 872 (not known to be minimal, but shorter than the old upper bound of 873):
1234561234516234512634512364513264513624513642513645213645123465123415 6234152634152364152346152341652341256341253641253461253416253412653412 3564123546123541623541263541236541326543126453162435162431562431652431 6254316245316425314625314265314256314253614253164523146523145623145263 1452361452316453216453126435126431526431256432156423154623154263154236 1542316542315642135642153624153621453621543621534621354621345621346521 3462513462153642156342165342163542163452163425163421564325164325614325 6413256431265432165432615342613542613452613425613426513426153246513246 5312463512463152463125463215463251463254163254613254631245632145632415 6324516324561324563124653214653241653246153264153261453261543265143625 1436521435621435261435216435214635214365124361524361254361245361243561 2436514235614235164235146235142635142365143265413625413652413562413526 41352461352416352413654213654123
- D. Ashlock and J. Tillotson. Construction of small superpermutations and minimal injective superstrings. Congressus Numerantium, 93 (1993), 91-98.
- Dhruv Ajmera, An O(n) Space Construction of Superpermutations, arXiv:2505.09628 [cs.DM], 2025. See p. 29.
- Anonymous 4chan Poster, Robin Houston, Jay Pantone and Vince Vatter, A lower bound on the length of the shortest superpattern, October 25, 2018.
- Jeffrey A. Barnett, Permutation Strings
- Greg Egan, Superpermutations, October 20, 2018.
- Michael Engen and Vincent Vatter, Containing all permutations, Amer. Math. Monthly, 128 (2021), 4-24, section 2; arXiv preprint, arXiv:1810.08252 [math.CO], 2018-2020.
- James Grime and Brady Haran, Superpermutations, Numberphile video, 2018.
- James Grime, Matt Parker and Robin Houston, New Superpermutations Discovered!, standupmaths video, March 11, 2019.
- Robin Houston, Tackling the Minimal Superpermutation Problem, arXiv:1408.5108 [math.CO], 2014.
- Robin Houston and Matt Parker, Superpermutations: the maths problem solved by 4chan, standupmaths video (2019).
- Nathaniel Johnston, Non-uniqueness of minimal superpermutations, Discrete Math., 313 (2013), 1553-1557.
- Nathaniel Johnston, The minimal superpermutation problem, 2013.
- Nathaniel Johnston, All minimal superpermutations on five symbols have been found
- Miryana Stefanović, Supermutacije (Supermutations), Master's Thesis, Univ. Belgrade (Serbia 2023). See p. 9. (In Serbian)
- Wikipedia, Superpermutation
- Aaron Williams, Hamiltonicity of the Cayley digraph on the symmetric group generated by sigma = (1 2 ... n) and tau = (1 2), arXiv:1307.2549v3 [math.CO], 2017.
Row lengths of
A332089 (for n >= 1).
A376269
a(n) = n! + (n - 1)! + (n - 2)! + n - 3.
Original entry on oeis.org
3, 9, 33, 152, 867, 5884, 46085, 408246, 4032007, 43908488, 522547209, 6745939210, 93884313611, 1401079680012, 22317642547213, 377917892352014, 6778983923712015, 128403161542656016, 2560949482291200017, 53645489280294912018, 1177524571957493760019, 27027108408834293760020
Offset: 2
- Paolo Xausa, Table of n, a(n) for n = 2..400
- Anonymous 4chan poster, Robin Houston, Jay Pantone, and Vince Vatter, A lower bound on the length of the shortest superpattern, 2018.
- Michael Engen and Vincent Vatter, Containing All Permutations, The American Mathematical Monthly, 128 (1), 2021, pp. 4-24 (preprint version).
- James Grime and Brady Haran, Superpermutations, Numberphile video, 2018.
- Wikipedia, Superpermutation.
-
Table[n^2 * (n - 2)! + n - 3, {n, 2, 25}]
-
from sympy import factorial
def A376269(n): return n**2*factorial(n-2)+n-3 # Chai Wah Wu, Sep 20 2024
A332090
The smallest superpermutation of order n, read as a base n+1 number.
Original entry on oeis.org
1, 16, 112249, 36192508500267905991836
Offset: 1
For n=2, the shortest superpermutation is '121': it contains the permutations (1,2) and (2,1) as substrings. Considered as a number in base 3 this is 1*3^2 + 2*3 + 1 = 16 = a(2).
For n=3, the shortest superpermutation is '123121321': it contains all permutations of {1,2,3} as substrings. As a number written in base 4 this is 1*4^8 + 2*4^7 + ... + 1 = 112249 = a(3).
For n=4, the shortest superpermutation is '123412314231243121342132413214321'. As a number written in base 5 this is 1*5^32 + ... + 2*5 + 1 = 36192508500267905991836 = a(4).
From n=5 on, the shortest superpermutation is no longer unique: there are 8 inequivalent ones of minimal length 153. Only one of them is symmetric with respect to reversal of the digits, which is not the case for the lexicographically first one, which corresponds to the number a(5) ~ 6^152 + 2*6^151 + ... + 1*6 + 2 ~ 2.7e18.
-
SP=[1, 121, 123121321, 123412314231243121342132413214321, fromdigits([d-37| d<-Vecsmall("&G1HN<3Y2OXG:ZO2[:GY3H:RE3YDOZ3P:[EXP>NER2=4ENH=2>P1")], 100)] \\ custom base100 encoding
A332090(n)=fromdigits(digits(SP[n]),n+1)
/* Alternatively, considering A332089 as the more fundamental sequence: */
A332090(n)=fromdigits(A332089_row(n),n+1)
A341300
a(n) = n! + (n-1)! + (n-2)! + (n-3)! + n - 3.
Original entry on oeis.org
10, 34, 154, 873, 5908, 46205, 408966, 4037047, 43948808, 522910089, 6749568010, 93924230411, 1401558681612, 22323869568013, 378005070643214, 6780291598080015, 128424084332544016, 2561305169719296017, 53651891654000640018, 1177646217057902592019
Offset: 3
-
Array[Total[(# - Range[0, 3])!] + # - 3 &, 20, 3] (* Michael De Vlieger, Apr 07 2021 *)
-
from sympy import factorial
def A341300(n): return (n**2*(n-2)+1)*factorial(n-3)+n-3 # Chai Wah Wu, Sep 20 2024
A376069
a(n) is the lexicographically earliest minimal superpermutation on n symbols, where the symbols are {1, 2, ..., n}, with 1 <= n <= 9.
Original entry on oeis.org
1, 121, 123121321, 123412314231243121342132413214321, 123451234152341253412354123145213425134215342135421345214352145321452314253142351423154231245312435124315243125432154325143254132451324153241352413254312
Offset: 1
- Michael Engen and Vincent Vatter, Containing All Permutations, The American Mathematical Monthly, 128 (1), 2021, pp. 4-24 (preprint version).
- James Grime and Brady Haran, Superpermutations, Numberphile video, 2018.
- Nathaniel Johnston, Non-uniqueness of minimal superpermutations, Discrete Mathematics, Vol. 313, Issue 14, 2013, pp. 1553-1557 (preprint version).
- Nathaniel Johnston, All Minimal Superpermutations on Five Symbols Have Been Found, 2014.
- Wikipedia, Superpermutation.
A376572
Triangle read by rows: T(n,k) is the frequency of the symbol k in the lexicographically earliest minimal superpermutation on n symbols, where the symbols are {1, 2, ..., n}.
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 10, 9, 8, 6, 32, 33, 31, 31, 26
Offset: 1
Triangle begins:
n\k| 1 2 3 4 5 ...
----------------------------
1 | 1;
2 | 2, 1;
3 | 4, 3, 2;
4 | 10, 9, 8, 6;
5 | 32, 33, 31, 31, 26;
...
For n = 3, the minimal superpermutation is 123121321; symbol 1 appears 4 times, symbol 2 appears 3 times and symbol 3 appears 2 times.
Showing 1-6 of 6 results.
Comments