A332120
a(n) = 2*(10^(2n+1)-1)/9 - 2*10^n.
Original entry on oeis.org
0, 202, 22022, 2220222, 222202222, 22222022222, 2222220222222, 222222202222222, 22222222022222222, 2222222220222222222, 222222222202222222222, 22222222222022222222222, 2222222222220222222222222, 222222222222202222222222222, 22222222222222022222222222222, 2222222222222220222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332130 ..
A332190 (variants with different repeated digit 3, ..., 9).
Cf.
A332121 ..
A332129 (variants with different middle digit 1, ..., 9).
-
A332120 := n -> 2*((10^(2*n+1)-1)/9-10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332120(n)=(10^(n*2+1)\9-10^n)*2}, [0..15])
-
def A332120(n): return (10**(n*2+1)//9-10**n)*2
A332119
a(n) = (10^(2n+1)-1)/9 + 8*10^n.
Original entry on oeis.org
9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (1)9(1), updated: June 25, 2017.
- Makoto Kamada, Factorization of 11...11911...11, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332112 ..
A332118 (variants with different middle digit 2, ..., 8).
-
A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
-
Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
-
apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
-
def A332119(n): return 10**(n*2+1)//9+8*10**n
A332121
a(n) = 2*(10^(2n+1)-1)/9 - 10^n.
Original entry on oeis.org
1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
Cf.
A332131 ..
A332191 (variants with different repeated digit 3, ..., 9).
-
A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
-
Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
-
apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
-
def A332121(n): return 10**(n*2+1)//9*2-10**n
A332139
a(n) = (10^(2*n+1)-1)/3 + 6*10^n.
Original entry on oeis.org
9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332129 ..
A332189 (variants with different repeated digit 2, ..., 8).
Cf.
A332130 ..
A332138 (variants with different middle digit 0, ..., 8).
-
A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
-
Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
-
apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
-
def A332139(n): return 10**(n*2+1)//3+6*10**n
A332123
a(n) = 2*(10^(2n+1)-1)/9 + 10^n.
Original entry on oeis.org
3, 232, 22322, 2223222, 222232222, 22222322222, 2222223222222, 222222232222222, 22222222322222222, 2222222223222222222, 222222222232222222222, 22222222222322222222222, 2222222222223222222222222, 222222222222232222222222222, 22222222222222322222222222222, 2222222222222223222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332113 ..
A332193 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332123 := n -> 2*(10^(2*n+1)-1)/9+10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
-
apply( {A332123(n)=10^(n*2+1)\9*2+10^n}, [0..15])
-
def A332123(n): return 10**(n*2+1)//9*2+10**n
A332124
a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.
Original entry on oeis.org
4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332114 ..
A332194 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
-
Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{4},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{4,242,22422},20](* Harvey P. Dale, Mar 06 2023 *)
-
apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
-
def A332124(n): return (10**(n*2+1)//9+10**n)*2
A332125
a(n) = 2*(10^(2n+1)-1)/9 + 3*10^n.
Original entry on oeis.org
5, 252, 22522, 2225222, 222252222, 22222522222, 2222225222222, 222222252222222, 22222222522222222, 2222222225222222222, 222222222252222222222, 22222222222522222222222, 2222222222225222222222222, 222222222222252222222222222, 22222222222222522222222222222, 2222222222222225222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332115 ..
A332195 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332125 := n -> 2*(10^(2*n+1)-1)/9+3*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
-
apply( {A332125(n)=10^(n*2+1)\9*2+3*10^n}, [0..15])
-
def A332125(n): return 10**(n*2+1)//9*2+3*10**n
A332126
a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.
Original entry on oeis.org
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332116 ..
A332196 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
-
apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
-
def A332126(n): return 10**(n*2+1)//9*2+4*10**n
A332127
a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.
Original entry on oeis.org
7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332117 ..
A332197 (variants with different repeated digit 1, ..., 9).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
-
apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
-
def A332127(n): return 10**(n*2+1)//9*2+5*10**n
A332128
a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.
Original entry on oeis.org
8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332120 ..
A332129 (variants with different middle digit 0, ..., 9).
-
A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
-
Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
-
apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
-
def A332128(n): return 10**(n*2+1)//9*2+6*10**n
Showing 1-10 of 10 results.
Comments