cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A332120 a(n) = 2*(10^(2n+1)-1)/9 - 2*10^n.

Original entry on oeis.org

0, 202, 22022, 2220222, 222202222, 22222022222, 2222220222222, 222222202222222, 22222222022222222, 2222222220222222222, 222222222202222222222, 22222222222022222222222, 2222222222220222222222222, 222222222222202222222222222, 22222222222222022222222222222, 2222222222222220222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332130 .. A332190 (variants with different repeated digit 3, ..., 9).
Cf. A332121 .. A332129 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332120 := n -> 2*((10^(2*n+1)-1)/9-10^n);
  • Mathematica
    Array[2 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332120(n)=(10^(n*2+1)\9-10^n)*2}, [0..15])
    
  • Python
    def A332120(n): return (10**(n*2+1)//9-10**n)*2

Formula

a(n) = 2*A138148(n) = A002276(2n+1) - 2*10^n.
G.f.: 2*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 2*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A332119 a(n) = (10^(2n+1)-1)/9 + 8*10^n.

Original entry on oeis.org

9, 191, 11911, 1119111, 111191111, 11111911111, 1111119111111, 111111191111111, 11111111911111111, 1111111119111111111, 111111111191111111111, 11111111111911111111111, 1111111111119111111111111, 111111111111191111111111111, 11111111111111911111111111111, 1111111111111119111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107649 = {1, 4, 26, 187, 226, 874, ...} for the indices of primes.

Crossrefs

Cf. (A077795-1)/2 = A107649: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332129 .. A332189 (variants with different repeated digit 2, ..., 8).
Cf. A332112 .. A332118 (variants with different middle digit 2, ..., 8).

Programs

  • Maple
    A332119 := n -> (10^(2*n+1)-1)/9+8*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 8*10^# &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,1],{9},PadRight[{},n,1]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{9,191,11911},20] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    apply( {A332119(n)=10^(n*2+1)\9+8*10^n}, [0..15])
    
  • Python
    def A332119(n): return 10**(n*2+1)//9+8*10**n

Formula

a(n) = A138148(n) + 9*10^n = A002275(2n+1) + 8*10^n.
G.f.: (9 - 808*x + 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332121 a(n) = 2*(10^(2n+1)-1)/9 - 10^n.

Original entry on oeis.org

1, 212, 22122, 2221222, 222212222, 22222122222, 2222221222222, 222222212222222, 22222222122222222, 2222222221222222222, 222222222212222222222, 22222222222122222222222, 2222222222221222222222222, 222222222222212222222222222, 22222222222222122222222222222, 2222222222222221222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Cf. A332131 .. A332191 (variants with different repeated digit 3, ..., 9).

Programs

  • Maple
    A332121 := n -> 2*(10^(2*n+1)-1)/9-10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 - 10^# &, 15, 0]
  • PARI
    apply( {A332121(n)=10^(n*2+1)\9*2-10^n}, [0..15])
    
  • Python
    def A332121(n): return 10**(n*2+1)//9*2-10**n

Formula

a(n) = 2*A138148(n) + 1*10^n = A002276(2n+1) - 10^n.
G.f.: (1 + 101*x - 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332139 a(n) = (10^(2*n+1)-1)/3 + 6*10^n.

Original entry on oeis.org

9, 393, 33933, 3339333, 333393333, 33333933333, 3333339333333, 333333393333333, 33333333933333333, 3333333339333333333, 333333333393333333333, 33333333333933333333333, 3333333333339333333333333, 333333333333393333333333333, 33333333333333933333333333333, 3333333333333339333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332129 .. A332189 (variants with different repeated digit 2, ..., 8).
Cf. A332130 .. A332138 (variants with different middle digit 0, ..., 8).

Programs

  • Maple
    A332139 := n -> (10^(2*n+1)-1)/3+6*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 6*10^# &, 15, 0]
    LinearRecurrence[{111,-1110,1000},{9,393,33933},20] (* Harvey P. Dale, Sep 17 2020 *)
  • PARI
    apply( {A332139(n)=10^(n*2+1)\3+6*10^n}, [0..15])
    
  • Python
    def A332139(n): return 10**(n*2+1)//3+6*10**n

Formula

a(n) = 3*A138148(n) + 9*10^n = A002277(2n+1) + 6*10^n = 3*A332113(n).
G.f.: (9 - 606*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332123 a(n) = 2*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

3, 232, 22322, 2223222, 222232222, 22222322222, 2222223222222, 222222232222222, 22222222322222222, 2222222223222222222, 222222222232222222222, 22222222222322222222222, 2222222222223222222222222, 222222222222232222222222222, 22222222222222322222222222222, 2222222222222223222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332113 .. A332193 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332123 := n -> 2*(10^(2*n+1)-1)/9+10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332123(n)=10^(n*2+1)\9*2+10^n}, [0..15])
    
  • Python
    def A332123(n): return 10**(n*2+1)//9*2+10**n

Formula

a(n) = 2*A138148(n) + 3*10^n = A002276(2n+1) + 10^n.
G.f.: (3 - 101*x - 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332124 a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.

Original entry on oeis.org

4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332114 .. A332194 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
  • Mathematica
    Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,2],{4},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{4,242,22422},20](* Harvey P. Dale, Mar 06 2023 *)
  • PARI
    apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
    
  • Python
    def A332124(n): return (10**(n*2+1)//9+10**n)*2

Formula

a(n) = 2*A138148(n) + 4*10^n = A002276(2n+1) + 2*10^n = 2*A332112(n).
G.f.: (4 - 202*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332125 a(n) = 2*(10^(2n+1)-1)/9 + 3*10^n.

Original entry on oeis.org

5, 252, 22522, 2225222, 222252222, 22222522222, 2222225222222, 222222252222222, 22222222522222222, 2222222225222222222, 222222222252222222222, 22222222222522222222222, 2222222222225222222222222, 222222222222252222222222222, 22222222222222522222222222222, 2222222222222225222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332115 .. A332195 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332125 := n -> 2*(10^(2*n+1)-1)/9+3*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 3*10^# &, 15, 0]
  • PARI
    apply( {A332125(n)=10^(n*2+1)\9*2+3*10^n}, [0..15])
    
  • Python
    def A332125(n): return 10**(n*2+1)//9*2+3*10**n

Formula

a(n) = 2*A138148(n) + 5*10^n = A002276(2n+1) + 3*10^n.
G.f.: (5 - 303*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332126 a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n.

Original entry on oeis.org

6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332116 .. A332196 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]
    Table[FromDigits[Join[PadRight[{},n,2],{6},PadRight[{},n,2]]],{n,0,20}] (* or *) LinearRecurrence[{111,-1110,1000},{6,262,22622},20] (* Harvey P. Dale, Oct 17 2021 *)
  • PARI
    apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])
    
  • Python
    def A332126(n): return 10**(n*2+1)//9*2+4*10**n

Formula

a(n) = 2*A138148(n) + 6*10^n = A002276(2n+1) + 4*10^n = 2*A332113(n).
G.f.: (6 - 404*x + 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 2*exp(x)*(10*exp(99*x) + 18*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024

A332127 a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
    
  • Python
    def A332127(n): return 10**(n*2+1)//9*2+5*10**n

Formula

a(n) = 2*A138148(n) + 7*10^n = A002276(2n+1) + 5*10^n.
G.f.: (7 - 505*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332128 a(n) = 2*(10^(2n+1)-1)/9 + 6*10^n.

Original entry on oeis.org

8, 282, 22822, 2228222, 222282222, 22222822222, 2222228222222, 222222282222222, 22222222822222222, 2222222228222222222, 222222222282222222222, 22222222222822222222222, 2222222222228222222222222, 222222222222282222222222222, 22222222222222822222222222222, 2222222222222228222222222222222
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332128 := n -> 2*(10^(2*n+1)-1)/9+6*10^n;
  • Mathematica
    Array[2 (10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
  • PARI
    apply( {A332128(n)=10^(n*2+1)\9*2+6*10^n}, [0..15])
    
  • Python
    def A332128(n): return 10**(n*2+1)//9*2+6*10**n

Formula

a(n) = 2*A138148(n) + 8*10^n = A002276(2n+1) + 6*10^n = 2*A332114(n).
G.f.: (8 - 606*x + 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-10 of 10 results.