A060465 Value of x of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.
0, 0, 0, 1, -1, 0, 0, 0, 1, -2, 7, -1, -511, 1, -1, 0, 1, -11, -2901096694, -1, 0, 0, 0, 1, -283059965, -2736111468807040, -1, 0, 1, 0, 1, 117367, 12602123297335631, 2, -5, 2, -2, 6, -23, 602, 23961292454, -1, -7, 1, -11, 1, -1, 0, 2, 0, 0, 0, 1, 2, 11, -1, 7, 1
Offset: 0
Examples
For n = 16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -511. 42 = 12602123297335631^3 + 80435758145817515^3 + (-80538738812075974)^3 was found by Andrew Booker and Andrew Sutherland. 74 = 66229832190556^3 + 283450105697727^3 + (-284650292555885)^3 was found by Sander Huisman.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004, Section D5, 231-234.
Links
- D. J. Bernstein, Three cubes
- A. Bogomolny, Finicky Diophantine Equations on cut-the-knot.org, accessed Nov. 10, 2015.
- B. Conn, L. Vaserstein, On sums of three integral cubes, Contemp. Math 166 (1994) MR1284068
- V. L. Gardiner, R. B. Lazarus, P. R. Stein, Solutions of the diophantine equation x^3+y^3=z^3-d, Math. Comp. 18 (1964) 408-413.
- D.R. Heath-Brown, W.M. Lioen and H.J.J. te Riele on Solving the Diophantine Equation x3 + y3 + z3 = k on a Vector Computer
- J. C. P. Miller, M. F. C. Woollett, Solutions of the Diophantine Equation x^3+y^3+z^3=k, J. Lond. Math. Soc. 30 (1) (1955) 101-110.
- Hisanori Mishima, About n=x^3+y^3+z^3
Programs
-
Mathematica
(* this program is not convenient for hard cases *) nmax = 29; xmin[] = 0; xmax[] = 20; xmin[16] = 500; xmax[16] = 600; xmin[24] = 2901096600; xmax[24] = 2901096700; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; r[n_ /; IntegerQ[n^(1/3)]] := {0, 0, n^(1/3)}; mySort = Sort[#1, Which[Abs[#1[[3]]] <= Abs[#2[[3]]], True, Abs[#1[[3]]] == Abs[#2[[3]]], If[Abs[#1[[2]]] <= Abs[#2[[2]]], True, False], True, False] & ] & ; rep := {x_, y_, z_} /; (x + y == 0 && x > 0) :> {-x, -y, z}; r[n_] := Reap[Do[ sp = r[n, x] /. C[1] -> 1; If[sp =!= False, xyz = {x, y, z} /. {ToRules[sp]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]]; sn = r[n, -x] /. C[1] -> 1; If[sn =!= False, xyz = {-x, y, z} /. {ToRules[sn]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]], {x, xmin[n], xmax[n]}]][[2, 1]] // Flatten[#, 1] & // mySort // First; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = Table[xyz = r[n]; Print[ " n = ", n, " {x,y,z} = ", xyz]; xyz[[1]], {n, A060464}] (* Jean-François Alcover, Jul 10 2012 *)
Extensions
Edited and a(24) added by M. F. Hasler, Nov 10 2015
a(25) from Tim Browning and further terms added by Charlie Neder, Mar 09 2019
More terms from Jinyuan Wang, Feb 13 2020
Comments