cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332508 a(n) = Sum_{d|n} binomial(n+d-2, n-1).

Original entry on oeis.org

1, 3, 7, 25, 71, 280, 925, 3561, 12916, 49346, 184757, 710255, 2704157, 10427747, 40119781, 155288897, 601080391, 2334714319, 9075135301, 35352181116, 137846759282, 538302226628, 2104098963721, 8233718962365, 32247603703576, 126412458920775, 495918551104687
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, Binomial[n + # - 2, n - 1] &], {n, 1, 27}]
    Table[SeriesCoefficient[Sum[x^k/(1 - x^k)^n, {k, 1, n}], {x, 0, n}], {n, 1, 27}]
  • PARI
    a(n) = sumdiv(n, d, binomial(n+d-2, n-1)); \\ Michel Marcus, Feb 14 2020

Formula

a(n) = [x^n] Sum_{k>=1} x^k / (1 - x^k)^n.
a(n) ~ 4^(n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Aug 04 2022

A343553 a(n) = Sum_{1 <= x_1 <= x_2 <= ... <= x_n = n} gcd(x_1, x_2, ... , x_n).

Original entry on oeis.org

1, 3, 8, 26, 74, 287, 930, 3572, 12966, 49379, 184766, 710712, 2704168, 10427822, 40123208, 155289768, 601080406, 2334740919, 9075135318, 35352194658, 137846990678, 538302226835, 2104098963742, 8233721100024, 32247603765020, 126412458921072, 495918569262798
Offset: 1

Views

Author

Seiichi Manyama, Apr 19 2021

Keywords

Examples

			a(3) = gcd(1,1,3) + gcd(1,2,3) + gcd(1,3,3) + gcd(2,2,3) + gcd(2,3,3) + gcd(3,3,3) = 1 + 1 + 1 + 1 + 1 + 3 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, EulerPhi[n/#] * Binomial[# + n - 2, n-1] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(n/d)*binomial(d+n-2, n-1));

Formula

a(n) = A343516(n,n-1).
a(n) = Sum_{d|n} phi(n/d) * binomial(d+n-2, n-1).
a(n) = [x^n] Sum_{k >= 1} phi(k) * x^k/(1 - x^k)^n.
a(n) ~ 2^(2*n - 2) / sqrt(Pi*n). - Vaclav Kotesovec, May 23 2021

A177975 Square array T(n,k) read by antidiagonals up. Each column is the first column in the matrix inverse of a triangular matrix that is the k-th differences of A051731 in the column direction.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 7, 9, 4, 1, 0, 2, 14, 16, 14, 5, 1, 0, 6, 13, 34, 30, 20, 6, 1, 0, 4, 27, 43, 69, 50, 27, 7, 1, 0, 6, 26, 83, 107, 125, 77, 35, 8, 1, 0, 4, 39, 100, 209, 226, 209, 112, 44, 9, 1, 0, 10, 38, 155, 295, 461, 428, 329, 156, 54, 10, 1
Offset: 1

Views

Author

Mats Granvik, May 16 2010

Keywords

Comments

The first column in this array is the first column in A134540 which is the matrix inverse of A177978. The second column is the first column in A159905. The rows in this array are described by both binomial expressions and closed form polynomials.

Examples

			Table begins:
  1..1...1...1....1.....1.....1......1......1.......1.......1
  0..1...2...3....4.....5.....6......7......8.......9......10
  0..2...5...9...14....20....27.....35.....44......54......65
  0..2...7..16...30....50....77....112....156.....210.....275
  0..4..14..34...69...125...209....329....494.....714....1000
  0..2..13..43..107...226...428....749...1234....1938....2927
  0..6..27..83..209...461...923...1715...3002....5004....8007
  0..4..26.100..295...736..1632...3312...6270...11220...19162
  0..6..39.155..480..1266..2975...6399..12825...24255...43692
  0..4..38.182..641..1871..4789..11103..23807...47896...91367
  0.10..65.285.1000..3002..8007..19447..43757...92377..184755
  0..4..50.292.1209..4066.11837..30920..74139..165748..349438
  0.12..90.454.1819..6187.18563..50387.125969..293929..646645
  0..6..75.473.2166..8101.26202..75797.200479..492406.1136048
  0..8.100.636.2976.11482.38523.115915.319231..816421.1960190
  0..8.100.696.3546.14712.52548.167112.483879.1296064.3249312
		

Crossrefs

Column k=1..5 gives A063524, A000010, A007438, A117108, A117109.
Main diagonal gives A332470.

Programs

  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*binomial(d+k-2, d-1)); \\ Seiichi Manyama, Jun 12 2021

Formula

From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{d|n} mu(n/d) * binomial(d+k-2,d-1). (End)

A338656 a(n) = Sum_{d|n} mu(d) * binomial(d + n/d - 2, d-1).

Original entry on oeis.org

1, 0, 0, -1, 0, -4, 0, -3, -5, -8, 0, -9, 0, -12, -28, -7, 0, -8, 0, -34, -54, -20, 0, 9, -69, -24, -44, -83, 0, 0, 0, -15, -130, -32, -418, 157, 0, -36, -180, -129, 0, 0, 0, -285, -494, -44, 0, 633, -923, -24, -304, -454, 0, 1090, -2000, -1183, -378, -56, 0, 3050, 0, -60, -3002, -31, -3638, 0
Offset: 1

Views

Author

Seiichi Manyama, Apr 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] * Binomial[# + n/# - 2, # - 1] &]; Array[a, 100] (* Amiram Eldar, Apr 22 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(d)*binomial(d+n/d-2, d-1));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, moebius(k)*(x/(1-x^k))^k))

Formula

G.f.: Sum_{k >= 1} mu(k) * (x/(1 - x^k))^k.
If p is prime, a(p) = 0.

A343565 a(n) = |{(x_1, x_2, ... , x_n) : 1 <= x_1 <= x_2 <= ... <= x_n <= n, gcd(x_1, x_2, ... , x_n, n) = 1}|.

Original entry on oeis.org

1, 2, 9, 30, 125, 428, 1715, 6270, 24255, 91367, 352715, 1345448, 5200299, 20019526, 77554749, 300295038, 1166803109, 4535971916, 17672631899, 68913247655, 269128640958, 1051984969598, 4116715363799, 16123381989000, 63205303195125, 247956558998878, 973469689288236
Offset: 1

Views

Author

Seiichi Manyama, Apr 20 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * Binomial[# + n - 1, n] &]; Array[a, 30] (* Amiram Eldar, Apr 25 2021 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(d+n-1, n));

Formula

a(n) = Sum_{d|n} mu(n/d) * binomial(d+n-1, n).
a(n) = [x^n] Sum_{k>=1} mu(k) * x^k/(1 - x^k)^(n+1).

A345131 Number of ordered n-tuples of integers from [ 1..n ] with no global factor.

Original entry on oeis.org

1, 2, 8, 29, 118, 427, 1671, 6260, 24034, 91301, 351261, 1345434, 5191170, 20018845, 77500485, 300290041, 1166450850, 4535971707, 17670369300, 68913194733, 269114332057, 1051984590581, 4116622325140, 16123381985750, 63204699026898, 247956554702702
Offset: 1

Views

Author

Seiichi Manyama, Jun 12 2021

Keywords

Crossrefs

Main diagonal of A177976.
Cf. A332470.

Programs

  • Mathematica
    a[n_] := Sum[DivisorSum[k, MoebiusMu[k/#] * Binomial[n + # - 2, # - 1] &], {k, 1, n}]; Array[a, 25] (* Amiram Eldar, Jun 13 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, moebius(k/d)*binomial(d+n-2, d-1)));

Formula

a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * binomial(d+n-2, d-1).
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=1} mu(k) * x^k / (1 - x^k)^n.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 19 2021
Showing 1-6 of 6 results.