A332278
Number of widely totally co-strongly normal integer partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0
The a(1) = 1 through a(20) = 2 partitions:
1: (1)
2: (11)
3: (21),(111)
4: (211),(1111)
5: (11111)
6: (321),(111111)
7: (1111111)
8: (11111111)
9: (32211),(111111111)
10: (4321),(322111),(1111111111)
11: (11111111111)
12: (111111111111)
13: (1111111111111)
14: (11111111111111)
15: (54321),(111111111111111)
16: (1111111111111111)
17: (11111111111111111)
18: (111111111111111111)
19: (1111111111111111111)
20: (4332221111),(11111111111111111111)
Not requiring co-strength gives
A332277.
The strong version is
A332297(n) - 1 for n > 1.
The narrow version is a(n) - 1 for n > 1.
The alternating version is
A332289.
The Heinz numbers of these partitions are
A332293.
The case of compositions is
A332337.
Cf.
A000009,
A100883,
A107429,
A133808,
A181819,
A316496,
A317245,
A317491,
A329746,
A332279,
A332290,
A332291,
A332292,
A332296,
A332576.
-
totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]
A332295
Number of widely recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (31) (32) (42) (43) (53)
(111) (211) (41) (51) (52) (62)
(1111) (221) (321) (61) (71)
(311) (411) (322) (332)
(11111) (111111) (331) (422)
(421) (431)
(511) (521)
(3211) (611)
(1111111) (3221)
(4211)
(11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
Partitions with normal multiplicities are
A317081.
The Heinz numbers of these partitions are a proper superset of
A317492.
Accepting any constant sequence instead of just 1's gives
A332272.
The total (instead of recursive) version is
A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
-
recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A332272
Number of narrowly recursively normal integer partitions of n.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 8, 10, 14, 18, 23, 30, 37, 46, 52, 70, 80, 100, 116, 146, 171, 203, 236, 290, 332, 401, 458, 547, 626, 744, 851, 1004, 1157, 1353, 1553, 1821, 2110, 2434, 2810, 3250, 3741, 4304, 4949, 5661, 6510, 7450, 8501, 9657, 11078, 12506, 14329, 16185
Offset: 0
The a(6) = 8 partitions are (6), (51), (42), (411), (33), (321), (222), (111111). Missing from this list are (3111), (2211), (21111).
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(211) (221) (51) (61) (62)
(1111) (311) (222) (322) (71)
(11111) (321) (331) (332)
(411) (421) (422)
(111111) (511) (431)
(3211) (521)
(1111111) (611)
(2222)
(3221)
(4211)
(11111111)
The strict instead of narrow version is
A330937.
The widely normal case is
A332277(n) - 1 for n > 1.
The wide version is
A332295(n) - 1.
Cf.
A000009,
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[Length[qtn]<=1,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
A330937
Number of strictly recursively normal integer partitions of n.
Original entry on oeis.org
1, 2, 3, 5, 7, 10, 15, 20, 27, 35, 49, 58, 81, 100, 126, 160, 206, 246, 316, 374, 462, 564, 696, 813, 1006, 1195, 1441, 1701, 2058, 2394, 2896, 3367, 4007, 4670, 5542, 6368, 7540, 8702, 10199, 11734, 13760, 15734, 18384, 21008, 24441, 27893, 32380, 36841
Offset: 0
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(21) (31) (32) (42) (43) (53) (54)
(211) (41) (51) (52) (62) (63)
(221) (321) (61) (71) (72)
(311) (411) (322) (332) (81)
(331) (422) (432)
(421) (431) (441)
(511) (521) (522)
(3211) (611) (531)
(3221) (621)
(4211) (711)
(3321)
(4221)
(4311)
(5211)
(32211)
The narrow instead of strict version is
A332272.
A wide instead of strict version is
A332295(n) - 1 for n > 1.
Cf.
A107429,
A181819,
A316496,
A317081,
A317245,
A317491,
A329744,
A329746,
A329766,
A332277,
A332576.
-
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Showing 1-4 of 4 results.
Comments