cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A332277 Number of widely totally normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 4, 4, 6, 3, 5, 7, 6, 8, 12, 9, 12, 13, 11, 12, 18, 17, 12, 32, 19, 25, 33, 30, 28, 44, 33, 43, 57, 51, 60, 83, 70, 83, 103, 96, 97, 125, 117, 134, 157, 157, 171, 226, 215, 238, 278, 302, 312, 359, 357, 396, 450, 444, 477, 580
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
Also the number of widely totally normal reversed integer partitions of n.

Examples

			The a(n) partitions for n = 1, 4, 10, 11, 16, 18:
  1  211   4321        33221        443221            543321
     1111  33211       322211       4432111           4333221
           322111      332111       1111111111111111  4432221
           1111111111  11111111111                    4433211
                                                      43322211
                                                      44322111
                                                      111111111111111111
		

Crossrefs

Normal partitions are A000009.
Taking multiplicities instead of run-lengths gives A317245.
Constantly recursively normal partitions are A332272.
The Heinz numbers of these partitions are A332276.
The case of all compositions (not just partitions) is A332279.
The co-strong version is A332278.
The recursive version is A332295.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

Extensions

a(61)-a(66) from Jinyuan Wang, Jun 26 2020

A332279 Number of widely totally normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 12, 22, 29, 62, 119, 208, 368, 650, 1197, 2173, 3895, 7022, 12698, 22940, 41564
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(7) = 22 compositions:
  (1)  (11)  (12)   (112)   (122)    (123)     (1123)
             (21)   (121)   (212)    (132)     (1132)
             (111)  (211)   (221)    (213)     (1213)
                    (1111)  (1121)   (231)     (1231)
                            (1211)   (312)     (1312)
                            (11111)  (321)     (1321)
                                     (1212)    (2113)
                                     (1221)    (2122)
                                     (2112)    (2131)
                                     (2121)    (2212)
                                     (11211)   (2311)
                                     (111111)  (3112)
                                               (3121)
                                               (3211)
                                               (11221)
                                               (12112)
                                               (12121)
                                               (12211)
                                               (21121)
                                               (111211)
                                               (112111)
                                               (1111111)
For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
		

Crossrefs

Normal compositions are A107429.
Constantly recursively normal partitions are A332272.
The case of partitions is A332277.
The case of reversed partitions is (also) A332277.
The narrow version is A332296.
The strong version is A332337.
The co-strong version is (also) A332337.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332296(n) - 1.

A332295 Number of widely recursively normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 34, 48, 54, 74, 86, 113, 132, 169, 200, 246, 293, 360, 422, 512, 599, 726, 840, 1009, 1181, 1401, 1631, 1940, 2240, 2636, 3069, 3567, 4141, 4846, 5556, 6470, 7505, 8627, 9936, 11523, 13176, 15151, 17430, 19935, 22846
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2020

Keywords

Comments

A sequence is widely recursively normal if either it is all 1's (wide) or its run-lengths cover an initial interval of positive integers (normal) and are themselves a widely recursively normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (42)      (43)       (53)
             (111)  (211)   (41)     (51)      (52)       (62)
                    (1111)  (221)    (321)     (61)       (71)
                            (311)    (411)     (322)      (332)
                            (11111)  (111111)  (331)      (422)
                                               (421)      (431)
                                               (511)      (521)
                                               (3211)     (611)
                                               (1111111)  (3221)
                                                          (4211)
                                                          (11111111)
For example, starting with y = (4,3,2,2,1) and repeatedly taking run-lengths gives (4,3,2,2,1) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1), all of which have normal run-lengths, so y is widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (4,3,2,2,1) -> (2,1,1,1) -> (3,1), so y is not fully normal (A317491).
Starting with y = (5,4,3,3,2,2,2,1,1) and repeatedly taking run-lengths gives (5,4,3,3,2,2,2,1,1) -> (1,1,2,3,2) -> (2,1,1,1) -> (1,3), so y is not widely recursively normal. On the other hand, starting with y and repeatedly taking multiplicities gives (5,4,3,3,2,2,2,1,1) -> (3,2,2,1,1) -> (2,2,1) -> (2,1) -> (1,1), so y is fully normal (A317491).
		

Crossrefs

The narrow version is A000012.
Partitions with normal multiplicities are A317081.
The Heinz numbers of these partitions are a proper superset of A317492.
Accepting any constant sequence instead of just 1's gives A332272.
The total (instead of recursive) version is A332277.
The case of reversed partitions is this same sequence.
The alternating (instead of recursive) version is this same sequence.
Dominated by A332576.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

A332274 Number of totally strong compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 22, 33, 56, 93, 162, 264, 454, 765, 1307, 2237, 3849, 6611, 11472, 19831, 34446, 59865, 104293, 181561, 316924
Offset: 0

Views

Author

Gus Wiseman, Feb 11 2020

Keywords

Comments

A sequence is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong sequence.
A composition of n is a finite sequence of positive integers with sum n.
Also the number of totally co-strong compositions of n.

Examples

			The a(1) = 1 through a(5) = 11 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (121)   (41)
                    (211)   (122)
                    (1111)  (131)
                            (212)
                            (311)
                            (2111)
                            (11111)
		

Crossrefs

The case of partitions is A316496.
The co-strong case is A332274 (this sequence).
The case of reversed partitions is A332275.
The alternating version is A332338.

Programs

  • Mathematica
    tni[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],tni[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tni]],{n,0,15}]

A332576 Number of integer partitions of n that are all 1's or whose run-lengths cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 31, 35, 51, 59, 80, 97, 130, 153, 204, 244, 308, 376, 475, 564, 708, 851, 1043, 1247, 1533, 1816, 2216, 2633, 3174, 3766, 4526, 5324, 6376, 7520, 8917, 10479, 12415, 14524, 17134, 20035, 23489, 27423, 32091, 37286, 43512
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2020

Keywords

Comments

First differs from A317491 at a(11) = 31, A317491(11) = 30.

Examples

			The a(1) = 1 through a(8) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (31)    (32)     (42)      (43)       (53)
             (111)  (211)   (41)     (51)      (52)       (62)
                    (1111)  (221)    (321)     (61)       (71)
                            (311)    (411)     (322)      (332)
                            (11111)  (111111)  (331)      (422)
                                               (421)      (431)
                                               (511)      (521)
                                               (3211)     (611)
                                               (1111111)  (3221)
                                                          (4211)
                                                          (11111111)
		

Crossrefs

The narrow version is A317081.
Heinz numbers of these partitions first differ from A317492 in having 420.
Not counting constant-1 sequences gives A317081.
Dominated by A332295.

Programs

  • Mathematica
    nQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},Union[Length/@Split[ptn]]==Range[Max[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],nQ]],{n,0,30}]

Formula

a(n > 1) = A317081(n) + 1.

A330937 Number of strictly recursively normal integer partitions of n.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 15, 20, 27, 35, 49, 58, 81, 100, 126, 160, 206, 246, 316, 374, 462, 564, 696, 813, 1006, 1195, 1441, 1701, 2058, 2394, 2896, 3367, 4007, 4670, 5542, 6368, 7540, 8702, 10199, 11734, 13760, 15734, 18384, 21008, 24441, 27893, 32380, 36841
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A sequence is strictly recursively normal if either it empty, its run-lengths are distinct (strict), or its run-lengths cover an initial interval of positive integers (normal) and are themselves a strictly recursively normal sequence.

Examples

			The a(1) = 1 through a(9) = 15 partitions:
  (1)  (2)  (3)   (4)    (5)    (6)    (7)     (8)     (9)
            (21)  (31)   (32)   (42)   (43)    (53)    (54)
                  (211)  (41)   (51)   (52)    (62)    (63)
                         (221)  (321)  (61)    (71)    (72)
                         (311)  (411)  (322)   (332)   (81)
                                       (331)   (422)   (432)
                                       (421)   (431)   (441)
                                       (511)   (521)   (522)
                                       (3211)  (611)   (531)
                                               (3221)  (621)
                                               (4211)  (711)
                                                       (3321)
                                                       (4221)
                                                       (4311)
                                                       (5211)
                                                       (32211)
		

Crossrefs

The narrow instead of strict version is A332272.
A wide instead of strict version is A332295(n) - 1 for n > 1.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    recnQ[ptn_]:=With[{qtn=Length/@Split[ptn]},Or[ptn=={},UnsameQ@@qtn,And[normQ[qtn],recnQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]
Showing 1-6 of 6 results.