cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A332752 The number of permutations of {1,1,1,1,2,2,2,2,...,n,n,n,n} such that each quadruple of k's (k=1..n) is equally spaced with b(k) other elements in between, and b(1) >= b(2) >= ... >= b(n).

Original entry on oeis.org

1, 1, 4, 16, 110, 544, 5444, 32520, 385776, 3282108, 40916528, 354328560, 7200045216, 67347823160, 1182323197504, 18086875471594, 358787259407482, 4564034487662420
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2020

Keywords

Examples

			In case of n = 1.
     |              | b(1)
-----+--------------+------
   1 | [1, 1, 1, 1] | [0] *
In case of n = 2.
     |                          | b(1),b(2)
-----+--------------------------+----------
   1 | [2, 2, 2, 2, 1, 1, 1, 1] | [0, 0]
   2 | [2, 1, 2, 1, 2, 1, 2, 1] | [1, 1]
   3 | [1, 2, 1, 2, 1, 2, 1, 2] | [1, 1]
   4 | [1, 1, 1, 1, 2, 2, 2, 2] | [0, 0]
In case of n = 3.
     |                                      | b(1),b(2),b(3)
-----+--------------------------------------+---------------
   1 | [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] | [0, 0, 0]
   2 | [3, 3, 3, 3, 2, 1, 2, 1, 2, 1, 2, 1] | [1, 1, 0]
   3 | [3, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 2] | [1, 1, 0]
   4 | [3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2] | [0, 0, 0]
   5 | [3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1] | [2, 2, 2]
   6 | [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2] | [2, 2, 2]
   7 | [2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1] | [2, 2, 2]
   8 | [1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2] | [2, 2, 2]
   9 | [2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3] | [2, 2, 2]
  10 | [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3] | [2, 2, 2]
  11 | [2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1] | [0, 0, 0]
  12 | [1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2] | [0, 0, 0]
  13 | [2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3] | [0, 0, 0]
  14 | [2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 3] | [1, 1, 0]
  15 | [1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 3, 3] | [1, 1, 0]
  16 | [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] | [0, 0, 0]
* (strongly decreasing)
		

Crossrefs

Column 4 of A332762.
Cf. A104430, A261517 (strongly decreasing), A285698, A322178, A332748, A332773, A332783, A332784.

Extensions

a(10)-a(17) from Max Alekseyev, Sep 27 2023

A332762 Square array T(n,k), n >= 0, k >= 2, read by antidiagonals, where T(n,k) is the number of permutations of {k 1's, k 2's, ..., k n's} with the property that j's are equally spaced for j=1..n and the interval of j+1 is less than or equal to the interval of j for j=1..n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 4, 33, 1, 1, 4, 18, 329, 1, 1, 4, 16, 124, 3825, 1, 1, 4, 16, 110, 738, 57293, 1, 1, 4, 16, 104, 544, 7464, 977581, 1, 1, 4, 16, 104, 508, 5444, 55890, 19619645, 1, 1, 4, 16, 104, 484, 5136, 32520, 668778, 442155529
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2020

Keywords

Examples

			Square array begins:
      1,    1,    1,    1,    1, ...
      1,    1,    1,    1,    1, ...
      5,    4,    4,    4,    4, ...
     33,   18,   16,   16,   16, ...
    329,  124,  110,  104,  104, ...
   3825,  738,  544,  508,  484, ...
  57293, 7464, 5444, 5136, 4968, ...
		

Crossrefs

Columns k=2..5 give A322178, A332748, A332752, A332773.
T(n,n) gives A332784.
T(n,n+1) gives A332783.

A332783 The number of permutations of {(n+1) 1's, (n+1) 2's, ..., (n+1) n's} with the property that k's are equally spaced for k=1..n and the interval of k+1 is less than or equal to the interval of k for k=1..n-1.

Original entry on oeis.org

1, 4, 16, 104, 484, 4848, 25104, 300336, 2335296, 27953952, 198725952, 4731323904, 33020828928, 606237831936, 8936541384192, 174694058933760, 1628654065588224, 56338295740213248, 545177455792662528, 20766878061520306176, 340162958990367645696
Offset: 1

Views

Author

Seiichi Manyama, Feb 23 2020

Keywords

Examples

			Define the interval of k as b(k).
In case of n = 1.
     |        | b(1)
-----+--------+-----
   1 | [1, 1] | [0]
In case of n = 2.
     |                    | b(1),b(2)
-----+--------------------+----------
   1 | [2, 2, 2, 1, 1, 1] | [0, 0]
   2 | [2, 1, 2, 1, 2, 1] | [1, 1]
   3 | [1, 2, 1, 2, 1, 2] | [1, 1]
   4 | [1, 1, 1, 2, 2, 2] | [0, 0]
In case of n = 3.
     |                                      | b(1),b(2),b(3)
-----+--------------------------------------+---------------
   1 | [3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1] | [0, 0, 0]
   2 | [3, 3, 3, 3, 2, 1, 2, 1, 2, 1, 2, 1] | [1, 1, 0]
   3 | [3, 3, 3, 3, 1, 2, 1, 2, 1, 2, 1, 2] | [1, 1, 0]
   4 | [3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2] | [0, 0, 0]
   5 | [3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1] | [2, 2, 2]
   6 | [3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2] | [2, 2, 2]
   7 | [2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1] | [2, 2, 2]
   8 | [1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, 2] | [2, 2, 2]
   9 | [2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3] | [2, 2, 2]
  10 | [1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3] | [2, 2, 2]
  11 | [2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1] | [0, 0, 0]
  12 | [1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2] | [0, 0, 0]
  13 | [2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3] | [0, 0, 0]
  14 | [2, 1, 2, 1, 2, 1, 2, 1, 3, 3, 3, 3] | [1, 1, 0]
  15 | [1, 2, 1, 2, 1, 2, 1, 2, 3, 3, 3, 3] | [1, 1, 0]
  16 | [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] | [0, 0, 0]
		

Crossrefs

Programs

  • Ruby
    def search(a, num, d, k, n)
      if num == 0
        @cnt += 1
      else
        (k * n - k + 1).times{|i|
          if a[i] == 0
            (i + d + 1..k * n - k + 1).each{|j|
              if (k - 1) * j - (k - 2) * i < k * n
                if (1..k - 1).all?{|m| a[m * j - (m - 1) * i] == 0}
                  (0..k - 1).each{|m| a[m * j - (m - 1) * i] = num}
                  search(a, num - 1, j - i - 1, k, n)
                  (0..k - 1).each{|m| a[m * j - (m - 1) * i] = 0}
                end
              end
            }
          end
        }
      end
    end
    def A(k, n)
      a = [0] * k * n
      @cnt = 0
      search(a, n, 0, k, n)
      @cnt
    end
    def A332783(n)
      (1..n).map{|i| A(i + 1, i)}
    end
    p A332783(5)

Extensions

a(9)-a(17) from Bert Dobbelaere, Mar 08 2020
a(18)-a(21) from Max Alekseyev, Sep 26 2023

A332784 The number of permutations of {n 1's, n 2's,...,n n's} with the property that b(1) >= b(2) >= ... >= b(n), where n k's are skipped by b(k) for k=1..n.

Original entry on oeis.org

5, 18, 110, 508, 4968, 25824, 305376, 2375616, 28316832, 202354752, 4771240704, 33499830528, 612464852736, 9023719675392, 176001733301760, 1649576855476224, 56693983168309248, 551579829498390528, 20888523161929138176, 342595860998544285696
Offset: 2

Views

Author

Seiichi Manyama, Feb 23 2020

Keywords

Examples

			In case of n = 2.
     |              | b(1),b(2)
-----+--------------+----------
   1 | [2, 2, 1, 1] | [0, 0]
   2 | [2, 1, 2, 1] | [1, 1]
   3 | [1, 2, 2, 1] | [2, 0]
   4 | [1, 2, 1, 2] | [1, 1]
   5 | [1, 1, 2, 2] | [0, 0]
In case of n = 3.
     |                             | b(1),b(2),b(3)
-----+-----------------------------+---------------
   1 | [3, 3, 3, 2, 2, 2, 1, 1, 1] | [0, 0, 0]
   2 | [3, 3, 3, 2, 1, 2, 1, 2, 1] | [1, 1, 0]
   3 | [3, 3, 3, 1, 2, 1, 2, 1, 2] | [1, 1, 0]
   4 | [3, 3, 3, 1, 1, 1, 2, 2, 2] | [0, 0, 0]
   5 | [3, 2, 1, 3, 2, 1, 3, 2, 1] | [2, 2, 2]
   6 | [3, 1, 2, 3, 1, 2, 3, 1, 2] | [2, 2, 2]
   7 | [1, 3, 3, 3, 1, 2, 2, 2, 1] | [3, 0, 0]
   8 | [2, 3, 1, 2, 3, 1, 2, 3, 1] | [2, 2, 2]
   9 | [1, 3, 2, 1, 3, 2, 1, 3, 2] | [2, 2, 2]
  10 | [2, 1, 3, 2, 1, 3, 2, 1, 3] | [2, 2, 2]
  11 | [1, 2, 3, 1, 2, 3, 1, 2, 3] | [2, 2, 2]
  12 | [2, 2, 2, 3, 3, 3, 1, 1, 1] | [0, 0, 0]
  13 | [1, 1, 1, 3, 3, 3, 2, 2, 2] | [0, 0, 0]
  14 | [1, 2, 2, 2, 1, 3, 3, 3, 1] | [3, 0, 0]
  15 | [2, 2, 2, 1, 1, 1, 3, 3, 3] | [0, 0, 0]
  16 | [2, 1, 2, 1, 2, 1, 3, 3, 3] | [1, 1, 0]
  17 | [1, 2, 1, 2, 1, 2, 3, 3, 3] | [1, 1, 0]
  18 | [1, 1, 1, 2, 2, 2, 3, 3, 3] | [0, 0, 0]
		

Crossrefs

Formula

Conjecture: a(n) = A332783(n) + (n-1)!.

Extensions

a(9)-a(17) from Bert Dobbelaere, Mar 08 2020
a(18)-a(21) from Max Alekseyev, Sep 26 2023
Showing 1-4 of 4 results.