A084968 Multiples of 7 coprime to 30.
7, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 539, 553, 581, 623, 637, 679, 707, 721, 749, 763, 791, 833, 847, 889, 917, 931, 959, 973, 1001, 1043, 1057, 1099, 1127, 1141, 1169, 1183, 1211, 1253, 1267, 1309
Offset: 1
Examples
77 is in the sequence because gcd(77, 30) = 1. 84 is not in the sequence because gcd(84, 3) = 6. 91 is in the sequence because gcd(91, 30) = 1.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Maple
q:= k-> igcd(k, 30)=1: select(q, [7*i$i=1..300])[]; # Alois P. Heinz, Feb 25 2020
-
Mathematica
7Select[ Range[190], GCD[ #, 2*3*5] == 1 & ]
-
PARI
is(n)=gcd(210,n)==7 \\ Charles R Greathouse IV, Aug 05 2013
Formula
G.f.: 7*x*(x^8 + 6*x^7 + 4*x^6 + 2*x^5 + 4*x^4 + 2*x^3 + 4*x^2 + 6*x + 1) / ((x-1)^2*(x+1)*(x^2+1)*(x^4+1)). - Colin Barker, Feb 24 2013
a(n) = 7*A007775(n).
a(n+8) = a(n) + 210. - Jianing Song, Nov 18 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/105. - Amiram Eldar, Jul 15 2023
Comments