cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084968 Multiples of 7 coprime to 30.

Original entry on oeis.org

7, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329, 343, 371, 413, 427, 469, 497, 511, 539, 553, 581, 623, 637, 679, 707, 721, 749, 763, 791, 833, 847, 889, 917, 931, 959, 973, 1001, 1043, 1057, 1099, 1127, 1141, 1169, 1183, 1211, 1253, 1267, 1309
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Comments

Numbers 7*k such that gcd(k,30) = 1.
Numbers congruent to 7, 49, 77, 91, 119, 133, 161, 203 modulo 210. - Jianing Song, Nov 18 2022

Examples

			77 is in the sequence because gcd(77, 30) = 1.
84 is not in the sequence because gcd(84, 3) = 6.
91 is in the sequence because gcd(91, 30) = 1.
		

Crossrefs

Subsequence of A008589.
Fourth row of A083140.
Cf. A084967 (5), A084969 (11), A084970 (13), A332799 (17), A332798 (19), A332797 (23), A007775 (7-rough numbers).

Programs

  • Maple
    q:= k-> igcd(k, 30)=1:
    select(q, [7*i$i=1..300])[];  # Alois P. Heinz, Feb 25 2020
  • Mathematica
    7Select[ Range[190], GCD[ #, 2*3*5] == 1 & ]
  • PARI
    is(n)=gcd(210,n)==7 \\ Charles R Greathouse IV, Aug 05 2013

Formula

G.f.: 7*x*(x^8 + 6*x^7 + 4*x^6 + 2*x^5 + 4*x^4 + 2*x^3 + 4*x^2 + 6*x + 1) / ((x-1)^2*(x+1)*(x^2+1)*(x^4+1)). - Colin Barker, Feb 24 2013
Lim_{n->oo} a(n)/n = A038111(4)/A038110(4) = 105/4. - Vladimir Shevelev, Jan 20 2015
a(n) = 7*A007775(n).
a(n+8) = a(n) + 210. - Jianing Song, Nov 18 2022
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(23 + sqrt(5) - sqrt(6*(5 + sqrt(5))))*Pi/105. - Amiram Eldar, Jul 15 2023

A084970 Numbers whose smallest prime factor is 13.

Original entry on oeis.org

13, 169, 221, 247, 299, 377, 403, 481, 533, 559, 611, 689, 767, 793, 871, 923, 949, 1027, 1079, 1157, 1261, 1313, 1339, 1391, 1417, 1469, 1651, 1703, 1781, 1807, 1937, 1963, 2041, 2119, 2171, 2197, 2249, 2327, 2353, 2483, 2509, 2561, 2587, 2743, 2873
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Examples

			a(2) = 13*13, a(3) = 13*17.
		

Crossrefs

Sixth row of A083140.
Cf. A084967 (5), A084968 (7), A084969 (11), A332799 (17), A332798 (19), A332797 (23), A008365 (13-rough numbers).

Programs

Formula

a(n) = a(n-480) + 30030 = a(n-1) + a(n-480) - a(n-481). - Charles R Greathouse IV, Nov 19 2014
Lim_{n->infinity} a(n)/n = A038111(6)/A038110(6) = 1001/16 = 62.5625. - Vladimir Shevelev, Jan 20 2015
a(n) = 13*A008365(n).

Extensions

More terms from David Wasserman, Oct 19 2004

A084969 Numbers whose smallest prime factor is 11.

Original entry on oeis.org

11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1331, 1397, 1441, 1507, 1529, 1573, 1639, 1661, 1727, 1793, 1837, 1859, 1903, 1969, 1991, 2057, 2101, 2123, 2167, 2189, 2299, 2321
Offset: 1

Views

Author

Robert G. Wilson v, Jun 15 2003

Keywords

Comments

Fifth row of A083140.
Integers k such that gcd(11*k, 210) = 1.

Examples

			a(2) = 11*11, a(3) = 11*13.
		

Crossrefs

Cf. A084967 (5), A084968 (7), A084970 (13), A332799 (17), A332798 (19), A332797 (23), A008364 (11-rough numbers).

Programs

  • Mathematica
    11Select[ Range[210], GCD[ #, 2*3*5*7] == 1 & ]
    Select[11*Range[0,200],GCD[#,210]==1&] (* Harvey P. Dale, Dec 23 2013 *)
  • PARI
    is(n)=gcd(n,2310)==11 \\ Charles R Greathouse IV, Nov 19 2014

Formula

G.f.: 11*x*(x^48 +10*x^47 +2*x^46 +4*x^45 +2*x^44 +4*x^43 +6*x^42 +2*x^41 +6*x^40 +4*x^39 +2*x^38 +4*x^37 +6*x^36 +6*x^35 +2*x^34 +6*x^33 +4*x^32 +2*x^31 +6*x^30 +4*x^29 +6*x^28 +8*x^27 +4*x^26 +2*x^25 +4*x^24 +2*x^23 +4*x^22 +8*x^21 +6*x^20 +4*x^19 +6*x^18 +2*x^17 +4*x^16 +6*x^15 +2*x^14 +6*x^13 +6*x^12 +4*x^11 +2*x^10 +4*x^9 +6*x^8 +2*x^7 +6*x^6 +4*x^5 +2*x^4 +4*x^3 +2*x^2 +10*x +1) / (x^49 -x^48 -x +1). - Colin Barker, Feb 22 2013
a(n) = a(n-48) + 2310 = a(n-1) + a(n-48) - a(n-49). - Charles R Greathouse IV, Nov 19 2014
Lim_{n->infinity} a(n)/n = A038111(5)/A038110(5) = 385/8 = 48.125. - Vladimir Shevelev, Jan 20 2015
a(n) = 11*A008364(n).

Extensions

a(47)-a(49) from Georg Fischer, Nov 07 2019
New name from Frank Ellermann, Feb 25 2020

A166063 23-rough numbers: positive integers that have no prime factors less than 23.

Original entry on oeis.org

1, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499
Offset: 1

Views

Author

Michael B. Porter, Oct 05 2009

Keywords

Comments

Or, positive integers relatively prime to 9699690 = 2*3*5*7*11*13*17*19.
First composite term is 529 = 23^2.

Examples

			667 = 23 * 29 is in the sequence since the two prime factors, 23 and 29, are not less than 23.
		

Crossrefs

Cf. A332797 (subsequence).

Programs

  • Maple
    A166063 := proc(n)
        option remember;
        local a;
        if n =1 then
            1;
        else
            for a from procname(n-1)+1 do
                numtheory[factorset](a) ;
                if min(op(%)) >= 23 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A166063(n),n=1..80) ; # R. J. Mathar, Nov 05 2024
  • Mathematica
    Select[Range[500],FactorInteger[#][[1,1]]>22&] (* Harvey P. Dale, Nov 22 2010 *)
  • PARI
    isA166063(n) = gcd(n,9699690)==1 \\ Michael B. Porter, Oct 10 2009

Formula

a(n) = k*n + O(1) where k = 323323/55296 = 5.8471.... In particular, k*n - 51 < a(n) < k*n + 45. - Charles R Greathouse IV, Sep 21 2018
A166061 SETMINUS A332798 - R. J. Mathar, Nov 05 2024

Extensions

Additional terms provided provided by Harvey P. Dale, Nov 22 2010

A332797 Numbers whose smallest prime factor is 23.

Original entry on oeis.org

23, 529, 667, 713, 851, 943, 989, 1081, 1219, 1357, 1403, 1541, 1633, 1679, 1817, 1909, 2047, 2231, 2323, 2369, 2461, 2507, 2599, 2921, 3013, 3151, 3197, 3427, 3473, 3611, 3749, 3841, 3979, 4117, 4163, 4393, 4439, 4531, 4577, 4853, 5129, 5221, 5267, 5359, 5497
Offset: 1

Views

Author

Frank Ellermann, Feb 24 2020

Keywords

Comments

The asymptotic density of this sequence is 55296/7436429. - Amiram Eldar, Dec 06 2020

Examples

			a(2) = 23*23, a(3) = 23*29.
		

References

  • Emmanuel Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist, Cambridge University Press, 2009, table 20.5 p. 421.

Crossrefs

Cf. A084967 (5), A084968 (7), A084969 (11), A084970 (13), A332799 (17), A332798 (19), A166063 (23-rough numbers).

Programs

  • Mathematica
    23 * Select[Range[240], CoprimeQ[#, 9699690] &] (* Amiram Eldar, Feb 24 2020 *)
    Select[Range[6000],FactorInteger[#][[1,1]]==23&] (* Harvey P. Dale, Aug 29 2025 *)
  • Rexx
    P = 23         ;  S = P
    do N = P by 2 while length( S ) < 255
       do I = 1 until P = X
          X = PRIME( I )
          if P = X       then  leave I
          if N // X = 0  then  iterate N
       end I
       S = S || ',' P*N
    end N
    say S          ;  return S

Formula

a(n) = 23*A166063(n).

A332799 Numbers whose smallest prime factor is 17.

Original entry on oeis.org

17, 289, 323, 391, 493, 527, 629, 697, 731, 799, 901, 1003, 1037, 1139, 1207, 1241, 1343, 1411, 1513, 1649, 1717, 1751, 1819, 1853, 1921, 2159, 2227, 2329, 2363, 2533, 2567, 2669, 2771, 2839, 2941, 3043, 3077, 3247, 3281, 3349, 3383, 3587, 3791, 3859, 3893
Offset: 1

Views

Author

Frank Ellermann, Feb 24 2020

Keywords

Comments

The asymptotic density of this sequence is 192/17017. - Amiram Eldar, Dec 06 2020

Examples

			a(2) = 17*17, a(3) = 17*19.
		

References

  • Emmanuel Desurvire, Classical and Quantum Information Theory: An Introduction for the Telecom Scientist, Cambridge University Press, 2009, table 20.5 p. 421.

Crossrefs

Cf. A084967 (5), A084968 (7), A084969 (11), A084970 (13), A332798 (19), A332797 (23), A008366 (17-rough numbers).

Programs

  • Mathematica
    17 * Select[Range[230], CoprimeQ[#, 30030] &] (* Amiram Eldar, Feb 24 2020 *)
  • Rexx
    P = 17         ;  S = P
    do N = P by 2 while length( S ) < 255
       do I = 1 until P = X
          X = PRIME( I )
          if P = X       then  leave I
          if N // X = 0  then  iterate N
       end I
       S = S || ',' P*N
    end N
    say S          ;  return S

Formula

a(n) = 17*A008366(n).
Showing 1-6 of 6 results.